1 |
應用資料採礦技術於保險公司附加保單之增售李家旭 Unknown Date (has links)
摘 要
本研究主是利用資料採礦技術,應用於人身保險公司,試圖尋找出購買附加保單的保戶之模式,以提高保戶購買附加保單之比例。資料來源為我國某人身保險業所提供之客戶資料,原始資料共計1,500,943筆,經過資料清理後分析資料為92,581筆,隨後進行基本敘述統計分析,與決策樹、類神經網路、關聯規則等資料採礦技術,其分析結果如下:
一、主保單的險種類型分為三種:死亡險、生死合險、健康險;不同的保單類型的保戶,有著不同的附加保單購買習慣。主保單為死亡險的保戶,主要因為保險需求而購買該主保單;保單為生死合險的保戶,主要因為儲蓄需求而購買保單;保單為健康險的保戶,是比較特別的族群,因為以往健康險是以附加保單形式出售,但保險公司因應潮流將健康險調整成也可以主保單形式出售,使得健康險中不會購買附加保單。
二、新保戶購買主保單為死亡險的客戶時,依照分類迴歸樹模型,預測此客戶是否有意願購買附加保單。新保戶購買主保單為生死合險的客戶時,依照分類迴歸樹模型,預測此客戶是否有意願購買附加保單。
三、保險公司可依照關聯規則結果產生出的8條關聯規則,針對舊有客戶進行保險商品再推銷策略。 / Abstract
The main purpose of this research is to apply data mining techniques, namely decision tree, neural network, and association on insurance company’s database in modeling the behaviors of customers who bought the policies. Data source is provided by the insurance company in Taiwan.
1、There are 3 type of main insurance policies:death insurance、endowment insurance、health insurance. Insurance buyers behave differently based upon the type of insurance they have. Death insurance buyers are in for the sole purpose of being insured. Endowment insurance buyers are in for the purpose of savings. Health insurance buyers usually buy the policies as the add-on products, However as consumers in a recent trend have become more health conscious, the health insurance that used to be as consumers in a recent trend have become more health conscious, the health insurance that used to be bought as the add-on products have become the main drive and being sold as main policy for the insurance company.
2、With the above information at hand, we use CART model to predict whether the death and endowment insurance buyers will have any potential in getting the add-on policies thereby opening the window of opportunities for the insurance issuers to come up and be able to promote the new line of products to their existing customers based on the research findings.
3、The insurance company can re-promote their insurance merchandises to old customers according to the 8 rules constructed by the association rules.
|
Page generated in 0.0169 seconds