• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

一個使用雙分群演算法進行智慧型手機應用程式推薦之框架 / A Framework for Using Co-Clustering Algorithms to Recommend Smartphone Apps

葉思妤, Yeh, Szu Yu Unknown Date (has links)
近年來,智慧型手機(Smartphone)的銷量超過其他型式手機。智慧型手機具有更先進、更開放的行動作業系統,可允許使用者自行安裝應用程式軟體(Application)來擴充手機功能。目前市面上的應用程式數量非常龐大,在眾多的應用程式和有限的時間下,使用者不太可能將所有的應用程式下載試用,所以對使用者而言,找出自己所想要和需要的應用程式,是個困難的問題。推薦系統可依照使用者的喜好,或是準備推薦項目的相似程度來做推薦,讓使用者能較快得到想要的資訊,目前主要的方式有協同過濾(Collaborative Filtering, CF)、內容過濾(Content-Based Filtering, CBF),還有結合前述兩種方式的混和式推薦(Hybrid Approach)。 本研究所使用的資料集是由政治大學資訊科學系所開發的實驗平台蒐集而來。資料以側錄的方式,將使用者實際操作手機應用程式的狀況記錄下來,其中包含了25位使用者和1125個應用程式。我們將原始資料集以三種方式整理成三個資料集:一、是否使用應用程式;二、使用應用程式的次數;三、使用應用程式的頻率,其值表示使用者在該應用程式的使用狀況。我們並將資料分成前段與後段時間兩部分,以前段時間的資料當作基準,推薦最多同群使用者使用的應用程式、同群使用者使用次數最多的應用程式,以及同群使用者最常使用的應用程式,然後以後段時間的資料做驗證,計算推薦結果的準確率與召回率加以比較。 我們使用知名的Information Theoretic Co-Clustering Algorithm和兩種基於Minimum Squared Residue Co-Clustering Algorithm的演算法將使用者與應用程式分群,利用分群結果做計算,推薦應用程式給使用者。實驗發現三種演算法在第一個資料集的準確率與召回率表現最好,此資料集以0和1的值,來紀錄使用者在各應用程式的使用狀況。實驗比較三個演算法的結果,在大部分的情況之下,一個基於Minimum Squared Residue Co-Clustering Algorithm的演算法,給出的結果較好。 此外,我們也發現應用程式開發者將應用程式上架提供下載時,以個人主觀想法對該應用程式定義其分類,與我們利用雙分群方法,以使用者實際操作的情況將應用程式分類的結果有些差異,或許在Google Play的分類上可做調整。 本研究提出推薦系統的框架具有彈性,未來可以使用不同的雙分群演算法做分群,也能套用其他的推薦方式。 / With the rapid evolution of smartphone devices, tens of thousands applications have been supplied on online stores such as App Store (operated by Apple Inc.) and Google Play (operated by Google Inc.). Since there are many applications, recommending applications to users becomes an important topic. In this thesis, we present a framework for using a co-clustering algorithm to recommend applications to users. Recommendations are a part of everyday life. People usually rely on some external knowledge to make informed decisions about a particular artifact or action. Using recommender systems is one of general approaches that help people make decisions. There are three common types of recommender systems, namely collaborative filtering, content-based filtering, and hybrid recommender systems. In this thesis, we use the dataset that was collected by a tool developed by the Department of Computer Science at the National Chengchi University. It recorded the users’ behavior when they were using their smartphones. We transform the original dataset into three types of datasets: 1) indicating whether a user used an application; 2) indicating the number of uses made by a user for an application; 3) indicating the frequency of uses made by a user for an application. Furthermore, we divide each dataset into two parts: The first part containing data for the early time period is used as the recommending base, and the second part containing data for the late time period is used for verifying the results. We utilize three famous co-clustering algorithms, which are the Information Theoretic Co-Clustering Algorithm and two algorithms based on the Minimum Squared Residue Co-Clustering Algorithm, in the proposed framework. According to the clusters given by a co-clustering algorithm, we recommend top five applications to each user by referring to the maximum number of users, the maximum number of uses, and the most frequently used applications that are in the same cluster. We calculate the precision and recall values to compare the results. From the experimental results, we find that the best result corresponds to the first type of dataset and also that one of the algorithms based on the Minimum Squared Residue Co-Clustering Algorithm is better than the other two algorithms in terms of the precision and recall values. From the clusters of applications, we obtain some interesting insights into the categories of applications. The categories of applications are set by their developers, but the users may not totally agree with the settings. There might be space for improvement for the categories of applications on the online store. In the future, we can utilize different co-clustering algorithms and other recommended methods in the proposed framework.
2

結合中文斷詞系統與雙分群演算法於音樂相關臉書粉絲團之分析:以KKBOX為例 / Combing Chinese text segmentation system and co-clustering algorithm for analysis of music related Facebook fan page: A case of KKBOX

陳柏羽, Chen, Po Yu Unknown Date (has links)
近年智慧型手機與網路的普及,使得社群網站與線上串流音樂蓬勃發展。臉書(Facebook)用戶截至去年止每月總體平均用戶高達18.6億人 ,粉絲專頁成為公司企業特別關注的行銷手段。粉絲專頁上的貼文能夠在短時間內經過點閱、分享傳播至用戶的頁面,達到比起電視廣告更佳的效果,也節省了許多的成本。本研究提供了一套針對臉書粉絲專頁貼文的分群流程,考量到貼文字詞的複雜性,除了抓取了臉書粉絲專頁的貼文外,也抓取了與其相關的KKBOX網頁資訊,整合KKBOX網頁中的資料,對中文斷詞系統(Jieba)的語料庫進行擴充,以提高斷詞的正確性,接著透過雙分群演算法(Minimum Squared Residue Co-Clustering Algorithm)對貼文進行分群,並利用鑑別率(Discrimination Rate)與凝聚率(Agglomerate Rate)配合主成份分析(Principal Component Analysis)所產生的分佈圖來對分群結果進行評估,選出較佳的分群結果進一步去分析,進而找出分類的根據。在結果中,發現本研究的方法能夠有效的區分出不同類型的貼文,甚至能夠依據使用字詞、語法或編排格式的不同來進行分群。 / In recent years, because both smartphones and the Internet have become more popular, social network sites and music streaming services have grown vigorously. The monthly average of Facebook users hit 1.86 billion last years and Facebook Fan Page has become a popular marketing tool. Posts on Facebook can be broadcasted to millions of people in a short period of time by LIKEing and SHAREing pages. Using Facebook Fan Page as a marketing tool is more effective than advertising on television and can definitely reduce the costs. This study presents a process to cluster posts on Facebook Fan Page. Considering the complicated word usage, we grasped information on Facebook Fan Page and related information on the KKBOX website. First, we integrated the information on the website of KKBOX and expanded the text corpus of Jibea to enhance the accuracy of word segmentation. Then, we clustered the posts into several groups through Minimum Squared Residue Co-Clustering Algorithm and used discrimination Rate and Agglomerate Rate to analyze the distribution chart of Principal Component Analysis. After that, we found the suitable classification and could further analyze it. How posts are classified can then be found. As a result, we found that the method of this study can effectively cluster different kinds of posts and even cluster these posts according to its words, syntax and arrangement.

Page generated in 0.0177 seconds