1 |
三角晶格易辛反鐵磁之量子相變 / Quantum phase transition in the triangular lattice Ising antiferromagnet張鎮宇, Chang, Chen Yu Unknown Date (has links)
量子擾動及挫折性兩者均可破壞絕對零溫的磁序,為近代凝態物 理關注的有趣現象。在外加橫場下的三角晶格易辛反鐵磁兼具量子臨 界現象(quantum criticality)及幾何挫折性,可謂量子磁性物質之一典 範理論模型。本論文利用平衡態及非平衡態量子蒙地卡羅(quantum Monte Carlo)方法探測三角晶格易辛反鐵磁之量子相變,其界定零溫 時無磁性的順磁態及具 Z6 對稱破缺的有序態(所謂時鐘態)。這裡的 量子蒙地卡羅方法為運用算符的零溫投射(zero-temperature projector) 及隨機序列展開(stochastic series expansion)演算法。在非平衡模擬 中,我們分別沿降溫過程及量子絕熱過程逼近量子相變點,藉此我們 得到動力學指數,及其它相關臨界指數。 / The destruction of magnetic long-range order at absolute zero temperature arising from quantum fluctuations and frustration is an interesting theme in modern condensed-matter physics. The triangular lattice Ising antiferromag- net in a transverse field provides a playground for the study of the combined effects of quantum criticality and geometrical frustration. In this thesis we use quantum Monte Carlo methods both in equilibrium and non-equilibrium setups to study the properties of the quantum critical point in the triangular lattice antiferromagnet, which separates a disordered paramagnetic state and an ordered clock state exhibiting Z6 symmetry breaking; The methods are based on a zero-temperature projector algorithm and the stochastic series ex- pansion algorithm. For the non-equilibrium setups, we obtain the dynamical exponent and other critical exponents at the quantum critical point approached by slowly decreasing temperature and through quantum annealing.
|
Page generated in 0.0296 seconds