• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

資訊遺漏與雜訊對企業盈虧預測範例學習系統衰減與干擾效果之研究

陳炎欽 Unknown Date (has links)
範例學習(Learning-from-Example, LFE)技術的發展,在人工智慧發展領域中,已成功地突破關於知識萃取的瓶頸,並廣泛地應用到諸多評估或預測模式以及專家系統的建立。在本研究中,以台灣上市公司歷年來的財務報表資訊,進行企業盈虧的預測,並探討判斷個案申出現資訊遺漏與雜訊時,對範例學習系統在企業盈虧預測所產生之影響。主要的影響分別為預測績效的衰減(attenuating)與干擾(disturbing)兩類。本研究並藉由「資料預先處理轉換」及「修正系統演算法」兩方面著手,來避兔或減少上述現象發生時,對範例學習系統在企業盈虧預測績效所造成之影響。 因此本研究主要以民國七十五年到八十四年期間,共十五項大小產業之股票上市公司財務報表及股價報酬等資料作為研究樣本,整體市場共計有3199筆樣本資料。而研究的進行可分為實驗設計階段以及實証資料測試階段。 實驗設計階段中,將探討當建樹或預測之資料含有資訊遺漏與雜訊時,對企業盈虧預測範例學習系統所造成之衰減與干擾效果。在資訊遺漏之探討下,分就「資料預先處理轉換」及「修正系統演算法」兩方面,評比了「線性內插法」、「迴歸預測法」、「獨立分群法」及「多重線索分割法」等四種之遺漏值解決方案,在區別能力及預測績效上之差異性;在雜訊之探討,則了解到雜訊對範例學習系統究竟會造成多大之干擾效果,並進一步測試雜訊過濾器是否能降低部份之干擾效果。 而接下來的實証資料測試階段,則以實証資料測試上述各種模式及方法,而獲得之結果將和實驗設計階段之結果作一比較對照,以符合實務應用之狀況。而根據研究結果顯示,主要可獲得下列結論: 一、分就:1. 建樹資料含遺漏或雜訊,2. 預測資料含遺漏或雜訊,3. 建樹及預測資料同時含遺漏或雜訊,三種情況考量。則第2種情況下對範例學習系統所造成之衰減或干擾效果相對較大,第3種情況次之,第1種情況較無影響。 二、在資訊遺漏之探討下: (一)、「迴歸預測法」及「多重線索分割法」最能避免衰減效果之發生,但前提是必需存在高度相關之替代線索。 (二)、最為簡便也最常被使用之「線性內插法」,並無法有效排除遺漏值所造成之衰減效果,而這和財務比率線索不具備單調性(Monotonicity)之原因有關。 (三)、對於遺漏值之處理若是採取整筆刪除之作法,則對系統之預測績效而言(命中率)可能造成較大之衰減效果,因為其可能破壞學習樣本資料之代表性。 (四)、在無高度相關替代線索,或者是系統之例子資料庫含有計質性(Qualitative)線索時,可以「獨立分群法」來降低遺漏值之衰減效果。 三、在雜訊之探討下: (一)、雜訊對範例學習系統之干擾效果是存在的,因此在蒐集處理樣本資料之過程中,即應小心避免雜訊混入其中。 (二)、雜訊過濾器能否排除影響樣本代表性之極端值,就結果看來並不能獲得一致之結論;或者是對極端值取捨之界限定義應為何?則有待更進一步之研究。
2

預測之效果與評估-台灣加權股價指數之應用 / The forecasting effect and performance – Application of TAIEX

紀登元, Ji, Deng Yuan Unknown Date (has links)
本文主要以時間序列為基礎,透過一般化自我相關條件異質變異模型、介入分析、誤差修正、多元轉換函數及組合預測等方法,來建立台灣加權股價指數的預測模型。 從預測精確度之結果顯示,多元轉換函數納入介入分析模型為單一預測模式的最佳預測模型,且其預測績效具有穩定性,而透過最小誤差迴歸組合預測模型可以再改善預測模型在MSPE、RMSPE、MAPE及Theil’s U等量的預測績效。 從多元轉換函數納入介入分析模型中發現,台灣加權股價指數會受到美國道瓊工業指數、台幣兌美元之匯率及消費者物價指數等經濟變數所影響。由於股票市場是重要景氣領先指標,因而當台灣或美國股票市場發生重大事件時,將會對台灣經濟發展產生衝擊,而從本文研究發現,政府可藉由短期政策的施行,產生另一股力量來平衡股市的波動,進而穩定台灣整體經濟發展。 / This research introduces GARCH, ECM, transfer function, and combined forecasting model to predict the changes of TAIEX, and to evaluate the forecasting performance of different models. The results show that the intervention analysis integrated into transfer function yields an accurate prediction model, and the forecasting performance is stable. According to the weighted average of forecasts by minimizing regression error, the resulting forecasting performance such as MSPE, RMSPE, MAPE and Theil’s U will be improved. The intervention analysis integrated into transfer function model shows that the TAIEX is affected by external factors, INDU, exchange rate, and consumer price index. The stock market is one of the major leading indictor, when the Taiwan or U.S. stock market had been impacted, and then Taiwan’s economic development will also be fluctuated. This paper shows that short-term implementation of policies could result in another force to balance the fluctuations in the stock market, and to stabilize the economic development in Taiwan.

Page generated in 0.0205 seconds