• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regional And Watershed-Scale Coherence In The Stable-Oxygen and Carbon Isotope Ratio Time Series in Tree Rings Of Coast Redwood (Sequoia Sempervirens)

Roden, John S., Johnstone, James A., Dawson, Todd E. 07 1900 (has links)
Coast redwood (Sequoia sempervirens) ecosystems are strongly influenced by the presence of summer marine fog, and variation in fog frequency is closely linked to climate variation in the NE Pacific region. Because oxygen isotope composition (𝛿¹⁸O) of organic matter records distinct water sources (e.g. summertime fog vs. winter precipitation) and carbon isotopes (𝛿¹³C) are typically sensitive to humidity and water status, it then follows that inter-annual variation in tree-ring isotope ratios, which are coherent across multiple sites, should preserve a potentially powerful proxy for climate reconstruction. Here we present an analysis of a 50-year time series for both 𝛿¹⁸O and 𝛿¹³C values from subdivided tree rings obtained from multiple redwood trees at multiple sites. Within-site and between site correlations were highly significant (p < 0.01) for the 𝛿¹⁸O time series indicating a regionally coherent common forcing of 𝛿¹⁸O fractionation. Within-site and between-site correlation coefficients were lower for the 𝛿¹³C than for the 𝛿¹⁸O time series although most were still significant (at least to p < 0.05). The hypothesized reason for the differences in the correlation is that carbon isotope discrimination is more sensitive to microenvironmental and tree-level physiological variation than is 𝛿¹⁸O fractionation. Stable-isotope variation in tree-ring cellulose was similar between slope, gully and riparian micro-habitats within a single watershed, implying that minor topographic variation when sampling should not be a major concern. These results indicate that stable-isotope time series from redwood tree rings are strongly influenced by regional climate drivers and potentially valuable proxies for Pacific coastal climate variability.
2

Stable-Carbon Isotope Time Series From Tropical Tree Rings Indicate A Precipitation Signal

Fichtler, Esther, Helle, Gerhard, Worbes, Martin 01 1900 (has links)
Although studies on stable-carbon isotopes in trees from temperate zones provide abundant paleoclimatic data, tropical trees are still understudied in this context. Therefore this study examined the variability of intra- and inter-annual stable-carbon isotopic pattern in several tree species from various tropical climates. The 𝛿¹³C values of samples of 12 broadleaved trees (seven species) from various paleotropical and neotropical sites along a climatic moisture gradient were investigated. The inter-annual variability between species and sites was studied. Further the relationship between 𝛿¹³C and precipitation time series was analyzed. Results show that tropical tree species show a similar variability in carbon isotopic composition as temperate tree species. Significant correlations between annual precipitation and tree-ring 𝛿¹³C time series were negative. Successful crossdating of a tree-ring 𝛿¹³C time series highlights the potential of carbon isotope measurements for tropical tree-ring analytical studies. Tropical broadleaved trees are able to capture a carbon isotopic signal in their annual rings even under everwet conditions and show good potential for paleoclimatic research.

Page generated in 0.0197 seconds