• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 5
  • 2
  • Tagged with
  • 24
  • 24
  • 10
  • 10
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preservation effect of imeglimin on pancreatic β-cell mass: Noninvasive evaluation using ¹¹¹In-exendin-4 SPECT/CT imaging and the perspective of mitochondrial involvements / イメグリミンによる膵β細胞保護効果の非侵襲的評価とミトコンドリアの関与

Fauzi, Muhammad 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24519号 / 医博第4961号 / 新制||医||1065(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 川口 義弥, 教授 辻川 明孝, 教授 大鶴 繁 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
2

Noninvasive evaluation of GIP effects on β-cell mass under high-fat diet / 高脂肪食下におけるGIPの膵β細胞保護効果の非侵襲的評価

Kiyobayashi, Sakura 26 September 2022 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24200号 / 医博第4894号 / 新制||医||1061(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 長船 健二, 教授 中本 裕士, 教授 江木 盛時 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
3

Supplementing Bovine Embryo Culture Media to Improve the Production and Quality of In Vitro Produced Bovine Embryos

Wooldridge, Lydia Katherine 09 April 2020 (has links)
Initial studies in this work explored the role of interleukin-6 (IL6) and leukemia inhibitory factor (LIF) in preimplantation bovine embryos. Neither cytokine affected the total percentage of embryos which developed to the blastocyst stage in vitro. However, supplementation of IL6 increased blastocyst inner cell mass (ICM) cell number without affecting trophectoderm (TE) cell number. Additionally, we found that IL6 activated signal transducer and activator of transcription 3 (STAT3) specifically within ICM cells. LIF, however, did not affect ICM cell number or activate STAT3 in ICM cells, and was not pursued further. This increase in ICM cell number by IL6 was largely comprised of hypoblast (GATA6+:NANOG-) cells, and most IL6-responsive cells in day 9 blastocysts were hypoblast cells (as measured by STAT3 activation). However, some epiblast (NANOG+) cells were also IL6-responsive, and IL6 appeared to initially slow epiblast differentiation. Finally, IL6-treated blastocysts also had increased transcripts of hypoblast/primitive endoderm (PE) markers. These results indicate that IL6 may improve pregnancy retention of IVP embryos by improving yolk sac development, but further work is needed to confirm this theory. Activation of STAT3 by IL6 could be blocked with a chemical Janus kinase 2 (JAK2) inhibitor (AZD1480). JAK2 inhibition from day 5 to 8 resulted in blastocyst ICMs with fewer than 10% the normal cell number, regardless of IL6 supplementation. This indicates that STAT3 is critical for bovine ICM development. Further analysis revealed that inhibition of JAK2/STAT did not prevent ICM formation but disrupted its maintenance. Additionally, we assessed the suitability of zinc sulfate and a bovine embryonic stem cell culture media (TeSR) for improving bovine embryo development in vitro. Zinc sulfate increased day 8 blastocyst total and ICM cell number. Therefore, zinc sulfate appears to improve blastocyst quality. The TeSR medium improved embryo development beyond day 8. In normal synthetic oviduct fluid, blastocysts degenerated after day 8, while blastocysts moved to TeSR had greatly increased cell numbers, and even exhibited PE migration out from the ICM, a phenomenon that has not been reported in vitro. This indicates that extended blastocyst culture is possible with TeSR media. / Doctor of Philosophy / Bovine embryos have been produced in vitro for the purpose of being transferred to recipient cattle to produce a calf since the 1980s. This practice allows cattle breeders to increase the number of offspring from their best females each year, and also allows for more rapid progress in generational genetic improvement. However, only approximately 10% of bovine oocytes survive and produce a calf. This poor efficiency of bovine in vitro embryo production negatively impacts the procedure's widespread use. A significant portion of these embryo losses are likely a result of inadequate in vitro culture conditions, particularly of the embryo culture media, the fluid in which embryos are grown. This media is often called "synthetic oviduct fluid," or SOF, because it is designed to mimic the fluid present in the cow's oviduct, where the embryo would normally reside. However, SOF is much simpler in nature than actual cow oviduct fluid, and this leads to reduced embryonic survival of in vitro produced embryos. Unfortunately, we know very little of what molecules control and promote bovine embryo development. Therefore, one major goal of bovine embryo research is to identify these factors and add them to SOF. The goal of this work was to examine the ability of three molecules, interleukin-6 (IL6), leukemia inhibitory factor (LIF), and zinc sulfate, to increase the number and quality of blastocysts produced through in vitro culture techniques. Additionally, I tested the replacement of SOF with a complex cell culture media, known as TeSR. This medium is more complex than SOF, and therefore should better promote embryo development. This work revealed that IL6, but not LIF, improves in vitro produced (IVP) bovine blastocyst quality. Unfortunately, neither IL6 nor LIF affected the percentage of embryos which survived to the blastocyst stage. However, IL6, but not LIF, increased the number of cells in the inner cell mass (ICM) of the blastocysts. ICM cells are the portion of the embryo which will produce the future calf. IVP bovine embryos are known to have fewer cells than normal, in vivo derived, blastocysts, and this issue is believed to cause some embryonic death after embryo transfer. Therefore, treatment with IL6 may increase the percentage of embryos which will survive after transfer and produce a calf. We also found the addition of zinc sulfate to SOF to benefit embryo quality. None of the concentrations of zinc significantly improved the percentage of embryos which survived to the blastocyst stage, but 2 µM zinc did increase ICM cell number. Like IL6, this may improve embryo survival after transfer. The use of the TeSR media as a replacement for SOF had some benefits. Unfortunately, this media is unusable for producing embryos for transfer to recipients, as we discovered early embryos could not survive in the media. However, blastocyst-stage embryos thrived in it, and could be cultured in vitro for a longer period of time as a result. Therefore, this media will be a useful tool for studying bovine embryo development in vitro, however it is unlikely to benefit calf production. In summary, this work provides evidence that zinc sulfate and IL6 are beneficial additions to SOF. However, future work is needed to determine if embryos produced with these factors are more able to produce a calf. Additionally, we discovered that TeSR is a superior extended blastocyst culture medium.
4

The Role of PTEN in Pancreatic Beta Cells and Insulin Promoter-expressing Neurons in Modulating Glucose Metabolism and Energy Homeostasis

Wang, Linyuan 06 December 2012 (has links)
PI3K signaling in pancreatic β cells has been shown to be important in modulating β cell mass and function under basal condition. Evidence suggests that a specific group of insulin promoter-expressing neurons also modulates glucose metabolism and energy homeostasis through their PI3K signaling. Thus we hypothesize that PI3K activation via PTEN deletion under the control of rat insulin promoter (RIP) in pancreatic β cells and RIP-expressing neurons will protect against hyperglycemia and diabetes in experimentally induced mouse models of type 2 diabetes. In Chapter IV, we showed that RIP-mediated PTEN deletion in pancreatic β cells led to PI3K activation and subsequent increased β cell mass and function, thus protected the mice from high fat diet (HFD)-induced diabetes. Furthermore in the absence of global leptin signaling, β cell-specific PTEN deletion maintained β cell function in the setting of severe insulin resistance, therefore prevented diabetes development. Interestingly, RIP-mediated PTEN deletion also resulted in increased peripheral insulin sensitivity due to PI3K activation in central nervous system. In Chapter V, we showed this increased insulin sensitivity was maintained after HFD feeding, which also contributed to the protection against diabetes. These mice also showed increased visceral adipogenesis and subcutaneous adiposity on HFD, which were dramatically attenuated in the absence of leptin signaling, indicated the essential role of peripheral leptin action in mediating the insulin sensitive phenotype from neuronal RIP PTEN deletion. Finally, we demonstrated that the insulin sensitizing phenotype in these mice was not mediated through ventromedial hypothalamic nuclei (VMH), such that VMH-specific PTEN deletion did not alter energy homeostasis or glucose metabolism. Together, the data from this thesis points to an inhibitory role of PTEN in both central nervous system and pancreatic β cells in glycemic control. Therefore, PTEN may represent a potential target for diabetes prevention and treatment.
5

The Role of PTEN in Pancreatic Beta Cells and Insulin Promoter-expressing Neurons in Modulating Glucose Metabolism and Energy Homeostasis

Wang, Linyuan 06 December 2012 (has links)
PI3K signaling in pancreatic β cells has been shown to be important in modulating β cell mass and function under basal condition. Evidence suggests that a specific group of insulin promoter-expressing neurons also modulates glucose metabolism and energy homeostasis through their PI3K signaling. Thus we hypothesize that PI3K activation via PTEN deletion under the control of rat insulin promoter (RIP) in pancreatic β cells and RIP-expressing neurons will protect against hyperglycemia and diabetes in experimentally induced mouse models of type 2 diabetes. In Chapter IV, we showed that RIP-mediated PTEN deletion in pancreatic β cells led to PI3K activation and subsequent increased β cell mass and function, thus protected the mice from high fat diet (HFD)-induced diabetes. Furthermore in the absence of global leptin signaling, β cell-specific PTEN deletion maintained β cell function in the setting of severe insulin resistance, therefore prevented diabetes development. Interestingly, RIP-mediated PTEN deletion also resulted in increased peripheral insulin sensitivity due to PI3K activation in central nervous system. In Chapter V, we showed this increased insulin sensitivity was maintained after HFD feeding, which also contributed to the protection against diabetes. These mice also showed increased visceral adipogenesis and subcutaneous adiposity on HFD, which were dramatically attenuated in the absence of leptin signaling, indicated the essential role of peripheral leptin action in mediating the insulin sensitive phenotype from neuronal RIP PTEN deletion. Finally, we demonstrated that the insulin sensitizing phenotype in these mice was not mediated through ventromedial hypothalamic nuclei (VMH), such that VMH-specific PTEN deletion did not alter energy homeostasis or glucose metabolism. Together, the data from this thesis points to an inhibitory role of PTEN in both central nervous system and pancreatic β cells in glycemic control. Therefore, PTEN may represent a potential target for diabetes prevention and treatment.
6

Imaging Islets of Langerhans by Positron Emission Tomography : Quantification of Beta-Cell Mass in the Native Pancreas and the Islet Graft

Eriksson, Olof January 2011 (has links)
Type 1 and 2 Diabetes Mellitus are a growing health problem throughout the world. There is an increasing  need for methodologies, which are both reliable and non-invasive to measure the amount of insulin-producing tissue (Beta-cell mass, or BCM), as well as rapidly quantify changes in the BCM due to the onset of disease, beta-cell replacement therapy, or other treatments. Positron Emission Tomography (PET) is a non-invasive, quantitative functional imaging technique which can be used to study dynamical or static processes inside the body. In this thesis, we present a study protocol for in vivo imaging of the most common form of beta- cell replacement therapy; islet transplantation. Islets were labeled with the PET tracer, 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG), and administered intra-portally, while the recipient was monitored by PET/CT. The hepatic distribution of the islets was highly heterogeneous, and around 25% (human) or 50% (porcine) of the administered islets could not be found in the liver after completed transplantation, confirming previous reports of considerable cell injury during the procedure leading to low hepatic engraftment. Native BCM in the pancreas can potentially be quantified using a PET tracer with sufficiently high specificity, but the major obstacle is the relative low amounts of insulin producing tissue (only 1-2% of the pancreatic volume). Two tetrabenazine analogues, [18F]FE-(+)-DTBZ and [18F]FE-(+)-DTBZ-d4, are ligands to VMAT2, which is expressed in islet tissue. Both analogues were investigated and characterized as potential BCM imaging agents both in vitro and in vivo.  Both tracers exhibited high preferential binding to islet tissue compared to exocrine pancreatic tissue. However, the specificity was not high enough to overcome the obscuring exocrine signal in vivo (7-10% of the signal originating from specific islet tracer uptake). This thesis demonstrates that it is possible to quantitatively assess islet transplantation by PET imaging. In vivo determination of native pancreatic BCM is, in theory, possible with both [18F]FE-(+)-DTBZ and [18F]FE-(+)-DTBZ-d4, but tracer analogues with higher islet specificity is needed for quantification of smaller BCM changes with physiological impact.
7

Characterising Crim1 in Vertebrate Development

Genevieve Kinna Unknown Date (has links)
This thesis investigates the role of Crim1, a transmembrane protein that is expressed in a number of areas in the vertebrate embryo including the developing kidney, eye, testis and spinal cord, which we believe may be a regulator of vertebrate tissue development. To dissect the function of Crim1 in normal mammalian development, two vertebrate models were used, zebrafish and mice. The results show that in zebrafish, crim1 is expressed early in development from the 16-cell stage through to 30 hours post fertilisation (Chapter 3). At 24 hours post fertilisation crim1 is expressed in the intermediate cell mass (icm), the site of haemangioblast development. Haemangioblasts are precursor cells that contribute to the formation of the blood and endothelial cell lineages. Injection of crim1 antisense oligonucleotides into zebrafish embryos (crim1 morphants) lead to an expansion of the icm and defects in the trunk, tail, somites and vasculature. The injection of crim1 antisense oligonucleotides into transgenic fli:GFP zebrafish revealed defects in the intersegmental, dorsal longitudinal anastomotic and parachordal vessels. Although crim1 is expressed during haemagiogensis the primary defect in the crim1 morphant zebrafish appears to be vascular. Further experiments used a ‘knock-in’ mouse, Crim1KST264, in which a loss of functional Crim1 leads to defects in limb (syndactyly), skeleton, eye, vascular, kidney and placental development. Analysis of the kidney phenotype in the embryonic Crim1KST264 homozygotes showed that a loss of Crim1 affects ERK1/2 and phosphorylated-Smad1/5/8 protein expression, although has no direct effect on BMP or TGFβ protein expression (Chapter 4). Analysis of the adult Crim1 outbred kidneys revealed they have albuminuria and leaky vasculature. The complex phenotype presented by the Crim1KST264 homozygote kidneys suggests Crim1 may be regulating multiple growth factor pathways. As Crim1 was shown to be expressed in the placenta, we characterised the role of Crim1 in placental development using the Crim1KST264 mouse (Chapter 5). Crim1KST264 homozygote placentas and embryos are smaller than their wild-type littermates. Our investigations revealed that Crim1 is expressed in trophoblast giant cells and in spongiotrophoblasts. A loss of Crim1 causes a developmental defect in that the junctional zone (region of the placenta containing spongiotrophoblasts and glycogen cells) is expanded, although this phenotype does not appear to be due to a defect in proliferation or apoptosis. Further analysis of E15.5 Crim1KST264 homozygote placentas revealed there was a reduction in the number of labyrinth trophoblast gaint cells. Thus, by using zebrafish and mouse as two model organisms of vertebrate development, this thesis has showed that Crim1 is clearly important for normal embryonic development. To dissect the complex phenotype presented by the Crim1KST264 mouse, further studies of Crim1 and its interaction with other growth factor pathways is needed to elucidate how and to what extent they interact with Crim1 to determine its biological effect on vertebrate tissue.
8

Non-invasive evaluation of GPR119 agonist effects on β-cell mass in diabetic male mice using ¹¹¹In-exendin-4 SPECT/CT / ¹¹¹インジウム標識exendin-4 SPECT/CTを用いた、糖尿病モデル雄マウスでのGPR119アゴニストによる膵β細胞保護効果の非侵襲的評価

Murakami, Takaaki 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22358号 / 医博第4599号 / 新制||医||1042(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 長船 健二, 教授 岩田 想, 教授 富樫 かおり / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
9

Establishment of non-invasive quantification of pancreatic beta cell mass in mice using SPECT/CT imaging with ¹¹¹In-labeled exendin-4 and its application to evaluation of diabetes treatment effects on pancreatic beta cell mass / ¹¹¹In標識exendin-4を用いたSPECT/CTによるマウス膵β細胞量の非侵襲的定量法の確立と、膵β細胞量に対する糖尿病治療効果の評価への応用

Hamamatsu, Keita 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22363号 / 医博第4604号 / 新制||医||1043(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 川口 義弥, 教授 富樫 かおり, 教授 上本 伸二 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
10

Noninvasive quantitative evaluation of viable islet grafts using ¹¹¹In-exendin-4 SPECT/CT / ¹¹¹インジウム標識exendin-4 SPECT/CTを用いた、生存移植膵島量の非侵襲的評価

Botagarova, Ainur 24 November 2023 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24965号 / 医博第5019号 / 新制||医||1069(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 川口 義弥, 教授 波多野 悦朗, 教授 中本 裕士 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM

Page generated in 0.0718 seconds