Spelling suggestions: "subject:".ppgep"" "subject:".ppgcc""
31 |
Stringent Response In Mycobacteria: Molecular Dissection Of RelJain, Vikas 07 1900 (has links)
Adaptation to any undesirable change in the environment dictates the survivability of many microorganisms. Such changes generate a quick and suitable response, which guides the physiology of bacteria. Stringent response is one of the mechanisms that can be called a survival strategy under nutritional starvation in bacteria and was first observed in E. coli upon amino acid starvation, when bacteria demonstrated an immediate downshift in the rRNA and tRNA levels (Stent and Brenner 1961). Mutations that rendered bacteria insensitive to amino acid levels were mapped to an ‘RC gene locus’, later termed relA because of the relAxed behavior of the bacteria (Alfoldi et al. 1962). Later on, Cashel and Gallant, showed that two “magic spots” (MSI and MSII) were specifically observed in starved cells when a labeled nucleotide extract of these cells was separated by thin layer chromatography (Cashel and Gallant 1969). These molecules were found to be polyphosphate derivatives of guanosine, ppGpp and pppGpp (Cashel and Kalbacher 1970; Sy and Lipmann 1973), and were shown to be involved in regulating the gene expression in
the bacterial cell, demonstrating a global response, thus fine-tuning the physiology of
the bacterium. Two proteins in E. coli, RelA and SpoT, carry out the synthesis and
hydrolysis of these molecules, respectively, and maintain their levels in the cell
(Cashel et al. 1996; Chatterji and Ojha 2001). On the other hand, Gram-positive
organisms have only one protein Rel carrying out the functions of both RelA and
SpoT (Mechold et al. 1996; Martinez-Costa et al. 1998; Avarbock et al. 1999).
Although Rel or RelA/SpoT has been studied from several systems in detail pertaining to the physiological adaptation, less information is available on the egulation of the protein activity under different conditions. Our studies show that the
RelMsm is composed of several domains (HD, RSD, TGS and ACT) with distinct function. HD and RSD domains, present in the N-terminal half of the protein, harbor catalytic sites for the hydrolysis and the synthesis of (p)ppGpp, respectively. TGS and ACT domains, on the other hand, are present at the C-erminal half of the protein and have regulatory function. It, therefore, appears that a communication exists between these domains, to regulate protein activity. It was shown earlier, while studying Rel from S.equisimilis, that there exists an interaction between the C-terminal and the N-
terminal of the protein which determines the kind of activity (synthesis/hydrolysis),
the protein should demonstrate (Mechold et al. 2002). Later, the N-terminal half
crystal structure of the same protein suggested an inter-domain “cross-talk” between the HD and the RSD domain that controls the synthesis/hydrolysis switch depending on cellular conditions (Hogg et al. 2004).
In the present work, studies have been carried out to understand a Gram-
positive Rel in greater detail and to find out how the opposing activities of Rel are
regulated so that a futile cycle of synthesis and hydrolysis of (p)ppGpp, at the expense of ATP, can be avoided. The work has been divided into several chapters describing
studies on various aspects of the protein.
Chapter 1 outlines the history of the stringent response and summarizes the
information available about the stringent response in various systems including plants.
Several roles that (p)ppGpp plays in different bacteria have been examined. A special mention on the crystal structure of RelSeq has been made with respect to the regulation of activity. Also, the information available regarding the effects of (p)ppGpp on RNA polymerase has been documented. Role of ppGpp in plants has been discussed in great detail with special emphasis on abiotic stresses.
Since different functional domains have been identified in RelMsm, the protein
has been divided into two halves and they have been discussed separately in the form
of two chapters.
Chapter 2 describes the N-terminal half of the Rel protein of M. smegmatis in greater detail. Out of the several domains identified, the role of the two domains
present in the N-terminal half of the protein has been studied. The N-terminal half
shows both synthesis and hydrolysis activities. Importantly, we find that the protein is active even in the absence of accessory factors such as ribosome and uncharged tRNA, unlike RelA of E. coli. Moreover, deletion of the C-terminal half of the protein leads to a much higher synthetic activity, clearly indicating that the C-terminus is involved in regulating the activity of the protein. Both TGS and ACT domains (the two domains found in the C-terminal half of the protein) have been found to play a regulatory role. The results also indicate that all the deleted constructs are active both in vitro and in vivo.
Chapter 3 discusses the C-terminal half of the protein and its role in the
multimerization observed in RelMsm. We show that multimerization of Rel protein is
due to the inter-molecular disulfide cross-linking. Furthermore, we find that the
monomer is the active species in vivo. One of the fascinating points about the C-
terminal half is that it is largely unstructured. Additionally, the C-terminal half cannot complement the N-terminal part of the protein when provided in trans, demonstrating further, the requirement of an intact protein for bringing about regulation of Rel activity. This requirement in cis suggests the presence of an intra-molecular
communication between the N- and the C-termini, as a mediator of protein regulation.
Further, presence of uncharged tRNA increases pppGpp synthesis and down-regulates
its hydrolysis in the wildtype protein. However, the uncharged tRNA-mediated
regulation is absent in the deleted construct with only the N-terminus half, indicating that uncharged tRNA binds to the C-terminal half of the protein. Several cysteine mutants have been constructed to understand their role in the regulation of Rel activity. The results suggest that one cysteine, present at the C-terminus, is required for intra-molecular cross-talk and the uncharged tRNA-mediated regulation.
A detailed characterization of the communication between the two halves of
the protein has been attempted in Chapter 4. Surface plasmon resonance experiments
carried out on the different cysteine mutants discussed in Chapter 3, for uncharged
tRNA binding indicate that all the mutants bind to uncharged tRNA with near-equal
affinities as the wildtype protein. This study suggests that the non-responsiveness for tRNA seen in one of the cysteine mutants is due to the loss of inter-domain
interaction, while the binding of protein to accessory factors is unaffected. Fluorescence resonance energy transfer has been carried out to observe domain
movement in the presence of accessory factors. Distances between the different
domains scattered in this ~90 kDa protein, measured by FRET technique, are suggestive of an inter-domain cross-talk, specifically between C338 and C692, thereby regulating the activity of this enzyme. We show, for the first time, that the product of this protein, (p)ppGpp can bind to the C-terminal half making it unstructured, and can, therefore, regulate the protein activity.
Chapter 5 is an effort to characterize the promoter of rel from M. tuberculosis. This study was undertaken in order to develop an expression system in mycobacteria. The +1 transcription and the translation start sites have been identified. The –10
hexamer for the RNA polymerase binding has also been mapped using site-directed
mutagenesis and is found to be TATCCT. This promoter is also unusually close to the +1 transcription start site. The promoter is specific for mycobacteria and does not
function in E. coli. Additionally, the promoter is found to be constitutive in M.
smegmatis; however, the possibility of it being regulated in M. tuberculosis cannot be
ruled out.
Appendix section discusses, in short, the phylogenetic analysis of the mycobacterial Rel sequences. Diagrams of the plasmids used in this study have been provided. Mass spectra recorded for the in vitro synthesized and purified pppGpp and
the trypsin digest of the full-length Rel protein have also been given.
O
O
O
O
|
32 |
(p)ppGpp and Stress Response : Decoding the Key Pathways by Small Molecule Analogues Biophysical Methods and Mass SpectrometrySyal, Kirtimaan January 2015 (has links) (PDF)
Under hostile conditions, bacteria elicit stress response. Such stress response is regulated by a secondary messenger called (p)ppGpp. (p)ppGpp is involved in wide range of functions such as GTP homeostasis, biofilm formation and cell growth. Its regulation and mode of action is not well understood. This work has been initiated with an aim to gain insights into the molecular basis of stress response. (p)ppGpp was discovered on the chromatogram of cell extract from starved E. coli cells. (p)ppGpp is synthesized and hydrolyzed by Rel/SpoT in Gram negative bacteria (such as E. coli), and by bifunctional enzyme called Rel in Gram positive bacteria (such as Mycobacteria).
The obvious question that comes in our mind is how bifunctional Rel enzyme decides on synthesis or hydrolysis in Gram positive bacteria such as Mycobacterium? In our laboratory, it has been shown that N-terminal domain of Rel shows unregulated (p)ppGpp synthesis implying regulatory role of C-terminal domain. Also, concurrent increase in anisotropy of Rel C-terminal domain with the increase in concentration of pppGpp has been observed indicating the binding of pppGpp to the C-terminal domain. We performed Isothermal Calorimetry experiment to confirm that pppGpp binds with C-terminal domain of Rel enzyme. For identification of the binding region, small molecule analogue 8-azido-pppGpp has been synthesized. This analogue is UV-crosslinked with C-terminal domain of Rel and specificity of the interaction has been determined by gel based crosslinking experiments. Crosslinked protein has been subjected to the ingel¬trypsin digestion and analyzed by mass spectrometry. We identified two crosslinked peptides in the mass spectra of trypsin digest in case of the crosslinked protein where identity of the parent peptide is confirmed by MS-MS analysis. Site directed mutagenesis has been carried out based on the conservation of residues in the crosslinked peptides. Isothermal Calorimetry analysis has been done where Rel C-terminal domain mutants are titrated with pppGpp in order to detect any defect in binding due to the mutations. Mutations leading to the reduced binding affinity of pppGpp to Rel C-terminal domain have been introduced in the full length Rel protein and activity assays are carried out so as to evaluate the effects of mutations on synthesis and hydrolysis activity. In mutants, synthesis activity is found to be increased with the concomitant reduction in hydrolysis activity. This indicates the feedback loop where pppGpp binds to Rel C-terminal domain to regulate it own synthesis and hydrolysis.
In E. coli, pppGpp binds to RNA polymerase and modulates the transcription. The region where it binds is controversial. In addition, whether ppGpp and pppGpp have different binding site on RNA polymerase is not known. The latter question becomes important in the light of evidence where differential regulation of transcription by ppGpp and pppGpp have been indicated. We found that ppGpp and pppGpp have an overlapping binding site on RNA polymerase. The 8-azido-ppGpp has been mapped on β and β’ subunits whereas binding site of 8-azido-pppGpp has been located on the β’ subunit. We observed that the 8-azido¬pppGpp labels RNA polymerase more efficiently than ppGpp. pppGpp can compete out ppGpp as illustrated by DRaCALA assay and gel based crosslinking experiment. However, the RNAP from B. subtilis does not bind to (p)ppGpp.
(p)ppGpp is ubiquitous in bacteria but absent in mammals. Thus, blocking (p)ppGpp synthesis would impede the survival of bacteria without having any effect on humans. Recently, Relacin compound has been synthesized by another group in order to inhibit (p)ppGpp synthesis. The limitations of this compound are the requirement of high concentration (5mM) for inhibition and low permeability across the membrane. Taking hints from the latter compound, we acetylated the
nd 2’, 3’ and 5’ position of ribose ring and benzoylated the 2position of guanine moiety in guanosine molecule. We observed significant inhibition of in vitro pppGpp synthesis and biofilm formation. More studies will be conducted in near future to test these compounds for their plausible functions.
In collaboration with Prof. Jayaraman (Organic Chemistry, IISc), many artificial glycolipids are synthesized and tested for biological function. We observed that synthetic glycolipids exhibit a profound effect as inhibitors of the key mycobacterial functions. These analogs impede biofilm formation and can plausibly affect long term survival. Glycolipid analogs can compete with natural glycolipids, thus may help in understanding their functions. Our past and recent studies have showed that the synthetic glycolipids act as inhibitors of mycobacterial growth, sliding motility and biofilm formation. The major lacuna of these glycolipid inhibitors is the requirement of high concentration. Their inhibitions at nanomolar concentrations remain to be achieved. Issues surrounding the thick, waxy mycobacterial cell wall structures will continue to be the focus in manifold approaches to mitigate detrimental effects of mycobacterial pathogens.
In chapter 1, introduction to the research work has been written and role of (p)ppGpp and its functions have been discussed. In chapter 2, novel binding site of pppGpp on Rel C-terminal domain and its regulatory role have been discussed. In chapter 3, differential binding of ppGpp and pppGpp to RNA polymerase has been discussed. In chapter 4, studies on natural and synthetic analogues of pppGpp have been presented. In chapter 5, synthetic glycolipids studies have been described. Chapter 6 summarizes all the chapters.
|
Page generated in 0.0265 seconds