101 |
Identification of Converging Pathways in the pathogenesis of NPM-RARA Variant Acute Promyelocytic LeukemiaMathew, Mariam Thomas 08 August 2013 (has links)
Acute Promyelocytic Leukemia is a subset of Acute Myeloid Leukemias, and is commonly associated with the presence of chromosomal translocations leading to the expression of the PML-RARA fusion protein. Less frequent cases of APL have been identified that express rare variant RARA fusion proteins, such as NPM-RARA. The presence of these fusions results in deregulated RARA signaling and response to the RARA ligand, ATRA. However, studies have indicated that loss of retinoid signaling alone is not sufficient to result in the leukemia. The goals of this thesis were to determine genes and pathways deregulated in variant APL that can serve as cooperating events in APL, through candidate pathway analysis and high-throughput gene expression profiling. Using a cell line model expressing variant fusion proteins associated with APL, we identified the deregulation of the NF-kappaB signaling pathway in APL, and describe the functional analysis of this pathway in our in vitro model. We next assessed whether promotion of survival signals could serve as a contributing factor in the accumulation of leukemic blasts in APL patient bone marrow. Our results indicated that PML-RARA and NPM-RARA expressing cells showed increased survival in the presence of TNFalpha, compared to wild type control cells. These data suggested a greater ability on the part of NPM-RARA cells to survive in the presence of TNFalpha. We also report for the first time the gene expression profiles of, and transcriptional effects of ATRA on, cells expressing the variant fusion proteins. Finally, we determined that the partner protein Nucleophosmin (NPM) has increased cytoplasmic localization in cells expressing the APL fusion proteins, and interacts within complexes comprising of RARA and RXRA. We further determined that the fusion can interfere with NPM function and cellular localization. Taken together, these studies provide evidence for the involvement of secondary hits in APL biology.
|
102 |
Regulation of Vertebrate Planar Cell PolarityTrinh, Jason 16 February 2010 (has links)
Planar cell polarity (PCP) provides positional information to a field of cells, coordinating the orientation of polarized structures or the direction of polarized cell movements. An evolutionarily conserved signalling pathway regulates PCP, however, the cue that establishes PCP is unknown. There is a strong precedent for Wnt signalling to act as the cue to establish PCP. Here I perform in vivo assays of cell polarity to examine the role of non-canonical Wnt signalling in regulating PCP, using zebrafish neural progenitor cells and asymmetric membrane localization of GFP-Prickle (a PCP cytoplasmic effector molecule) as a model system. My preliminary evidence suggests Wnt4a provides positional information to cells in the neural tube. In addition, using a membrane-yeast-two-hybrid approach to discover novel regulators of PCP, I identified Ring Finger 41 as a new binding partner to Van-gogh-like-2 (an essential PCP signalling molecule) and a novel regulator of vertebrate PCP.
|
103 |
The Mechanism of Discoidin Domain Receptor 1 Mediated Vascular CalcificationWan, Mark H. 19 March 2013 (has links)
Introduction: Activation of Runt Related Transcription Factor 2 (RUNX2) is required for transdifferentiation of Vascular Smooth Muscle Cells (VSMCs) into a calcifying osteoblast-like phenotype. Our lab showed that deletion of Discoidin Domain Receptor 1 (Ddr1), decreased atherosclerotic vascular calcification in the Ldlr-/- mouse.
Hypothesis: DDR1 regulates RUNX2 activity by affecting microtubule organization during VSMC mediated calcification.
Results: Ddr1-/- VSMCs show reduced RUNX2 activity when compared to Ddr1+/+ VSMCs. Addition of the microtubule-destabilizing agent nocodazole inhibited both RUNX2 activity and nuclear localization in Ddr1+/+ VSMCs. Addition of the microtubule-stabilizing agent taxol rescued RUNX2 nuclear localization in Ddr1-/- VSMCs. Despite this, Taxol was unable to rescue RUNX2 activity as it eliminated activity in both genotypes.
Conclusion: These findings indicate that under osteogenic conditions, Ddr1 deletion impedes the dynamic instability required for the maintenance of microtubule architecture. This prevents RUNX2 nuclear localization and transcriptional activation in VSMCs.
|
104 |
Epigenetic Silencing of Novel Tumour Suppressor Genes in MedulloblastomaKongkham, Paul 26 March 2012 (has links)
Medulloblastomas (MB) are the most common pediatric nervous system malignancy. Known mutations account for only a subset of MB cases. We hypothesized that CpG island methylation-mediated tumour suppressor gene (TSG) silencing contributes to MB pathogenesis, either alone, or in combination with genetic events such as loss of heterozygosity (LOH). We performed a microarray-based genome-wide screen of MB cell lines treated with 5-aza-2’deoxycytidine, identifying genes exhibiting increased expression following treatment. Using this strategy, we identified inhibitors of WNT signalling (SFRP1, SFRP2, and SFRP3) and an inhibitor of the HGF/MET signalling pathway (SPINT2) as putative TSGs silenced by promoter region methylation in MB.
Methylation of the WNT signalling inhibitors SFRP1, SFRP2, and SFRP3 was identified using bisulfite sequencing and methylation-specific PCR (MSP). Stable re-expression of SFRP1, SFRP2, and SFRP3 reduced proliferation, impaired anchorage-independent growth, and limited WNT signalling activity. SFRP1 re-expression reduced tumour growth in vivo in xenograft models. Aberrant WNT signalling plays a role in the pathogenesis of a subset of sporadic human MB, as well as MB in cases of Turcot syndrome with germline mutations of APC. Activating mutations of β-catenin are also implicated in a subset of MB. We have identified for the first time an additional mechanism – loss of normal pathway inhibition by SFRP gene silencing – that contributes to MB pathogenesis.
SPINT2 methylation was confirmed with bisulfite sequencing and MSP. Stable re-expression of SPINT2 reduced proliferation, impaired cell migratory ability, and decreased the capacity for anchorage-independent growth. In vivo, re-expression of SPINT2 reduced tumour formation in xenograft models. This study identified for the first time SPINT2 as a putative TSG in human MB, and further implicated aberrant HGF/MET oncogenic signalling in the pathogenesis of this disease.
The efficacy of targeting the HGF/MET pathway as a novel therapeutic strategy was tested in vitro using the small molecule MET kinase inhibitor PHA665752. Treatment of MB cell lines with PHA665752 reduced cell proliferation, anchorage-independent growth, migration, and limited downstream signalling via the MAPK and PI3K/AKT pathways.
|
105 |
Inhibition of Mitochondrial Translation as a Therapeutic Strategy for Acute Myeloid LeukemiaSkrtic, Marko 07 January 2013 (has links)
Inhibition of mitochondrial translation as a therapeutic strategy
for acute myeloid leukemia
Marko Škrtić
Doctor of Philosophy
Institute of Medical Science
University of Toronto
2012
Abstract
Intro: Acute myeloid leukemia (AML) therapies have remained unchanged for 20 years, and thus new therapies are needed.
Objective: To identify FDA-approved agents with anti-leukemia stem cell activity, we performed a screen and identified the antimicrobial tigecycline (TIG).
Methods: Primary AML mononuclear cells were isolated by Ficoll centrifugation from peripheral blood. Flow cytometry dye; JC-1, Carboxy-H2DCFDA, Mitotracker GreenFM. Leukemia stem cell activity was assayed by human AML engraftment in NOD/SCID mice.
Results: TIG induced cell death in primary AML patient samples (LD50, 3-6μM n=14), preferentially over normal hematopoietic cells. Likewise, in colony assays, TIG (5μM) reduced the clonogenic growth of AML samples (n=7) by 93%, demonstrating an effect on leukemia progenitor cells, but not normal hematopoietic cells (34% reduction, n=5). A yeast genome-wide screen identified mitochondrial translation inhibition as the mechanism of tigecycline-mediated cell death in eukaryotic cells. TIG decreased the expression of mitochondrial peptides, enzyme activity and membrane potential preferentially in AML cells over normal hematopoietic cells. ShRNA knockdown of TuFM mitochondrial translation factor in leukemia cells reproduced TIG anti-leukemia target effects previously described. We discovered that primary AML CD34+/CD38- stem cells have greater mitochondrial mass (3-fold, n=5) than normal CD34+ cells (n=4). Higher baseline mitochondrial mass in primary AML samples was predictive for tigecycline sensitivity in vitro (r=-0.71, p<0.05). We assessed the effect of TIG on primary AML stem cells defined by their ability to initiate leukemic engraftment in vivo. NOD/SCID mice treated with TIG had decreased human AML engraftment (n=3 AML patients) compared to control.
Conclusions: We identified mitochondrial translation inhibition as a novel therapeutic strategy for AML. Currently, a Phase I clinical trial of tigecycline in hematological malignancies is underway.
|
106 |
The Roles of Presenilin and FKBP14 in Drosophila Development and Notch Signallingvan de Hoef, Diana L. 26 February 2009 (has links)
The Roles of Presenilin and FKBP14 in Drosophila Development and Notch Signalling; Diana L. van de Hoef, Department of Molecular Genetics, University of Toronto, 2008.
The multimolecular gamma-secretase complex cleaves type 1 transmembrane proteins such as Notch and one of the genes targeted in Alzheimer’s disease known as APP. This complex comprises four components, known as anterior pharynx defective 1, presenilin enhancer 2, nicastrin and presenilin. Presenilin is an aspartyl protease that comprises the catalytic core of gamma-secretase, and mutated forms of presenilin cause early-onset familial Alzheimer’s disease. To further define the role of Drosophila Presenilin (Psn), I performed a genetic modifier screen to identify Psn-interacting genes. One of the genes that was identified, known as FKBP14, encodes a peptidyl-prolyl isomerase that may be involved in protein folding in the ER. I demonstrate that an immunosuppressant drug known as FK506, which binds FKBPs and abrogates their function, reduced Psn, anterior pharynx defective 1 and presenilin enhancer 2 protein levels in vivo. I also show that FKBP14 colocalized with anterior pharynx defective 1 and Psn in the ER, suggesting a role in gamma-secretase stability. Consistent with this, I demonstrate that FKBP14 binds with Psn and mediates Psn stability and Notch signalling in vivo.
To further characterize the role of FKBP14 in development, I analyzed its expression pattern and phenotypes of an FKBP14 null mutant. I show that FKBP14 localized to embryonic hemocytes and larval tissues, in addition to being expressed in developing egg chambers. FKBP14 function is required during development, since FKBP14 null mutants are recessive lethal. These mutants exhibited defects in larval disc development that resulted in eye, wing and notum phenotypes reminiscent of Psn dominant-negative and Notch-dependent phenotypes. Furthermore, FKBP14 mutants displayed enhanced apoptosis in larval tissues, suggesting a possible involvement in apoptosis regulation. I then examined the effects of FKBP14 overexpression, and observed enhanced Psn protein levels in vivo. Interestingly, co-expression of FKBP14 and Psn resulted in synergistic bristle phenotypes, suggesting a role for FKBP14 function in the Notch signalling pathway. Consistent with this, FKBP14 mutants enhanced Notch loss-of-function phenotypes in the wing. Altogether, my data demonstrate an essential role for FKBP14 during development, particularly in Psn protein maintenance and Notch signalling.
|
107 |
Functions of Ubiquitin Specific Protease 7 (USP7) in Epstein-Barr Virus Infection and Associated CancersSarkari, Feroz 22 February 2011 (has links)
The Epstein-Barr virus (EBV) infects over 90% of the human population and is associated with several human malignancies. The EBNA1 protein of EBV binds recognition sites in the latent origin of replication (oriP) and is important for the replication and segregation of EBV genomes in latently-infected cells. EBNA1 is also directly implicated in malignant transformation and immortalization of the host cell. EBNA1 does not have any known enzymatic activity and it employs cellular proteins to mediate its functions. One such protein is the ubiquitin specific protease, USP7, which is a key regulator of the p53 tumor suppressor. The aim of this thesis was to functionally characterize the interaction between EBNA1 and USP7. Here I show that USP7 promotes the DNA-binding activity of EBNA1 and is recruited along with an accessory protein, GMPS, to the oriP. The USP7-GMPS complex can deubiquitinate histone H2B and may enable epigenetic regulation of latent viral infection. Additionally, I present evidence for a direct role of EBNA1 in EBV-mediated carcinogenesis. EBNA1 prevents stabilization of p53 by USP7 and abrogates p53 activation by disrupting promyelocytic leukemia nuclear bodies (PML-NBs) that acetylate p53. This interferes with p53-activated gene expression and inhibits apoptosis. EBNA1-expressing cells also have impaired ability to repair DNA, but survive as well as or better than control cells. Thus EBNA1 creates a cellular environment conducive to transformation and immortalization. These studies have also allowed me to learn more about and expand on the known functions of USP7. I provide biochemical evidence suggesting that a P/A/ExxS motif is a preferred sequence for binding the USP7 N-terminal domain. Furthermore, I show USP7 is a negative regulator of PML proteins and PML-NBs and promotes p53 DNA-binding activity. Surprisingly, neither function required the deubiquitinase activity of USP7.
|
108 |
The Role of Ligand Induced Stabilization in the Allosteric Mechanism of Tetracycline RepressorReichheld, Sean 26 February 2009 (has links)
Allosteric regulation of proteins by reversible ligand binding is essential for regulation of fundamental biological processes. The mechanism by which a binding event alters the function of a distant site in a protein is only poorly understood. In this thesis, I use the Tetracycline Repressor (TetR) as a model system to study ligand induced allostery. The transcription of genes encoding the resistance to the antibiotic, tetracycline (Tc), is repressed by TetR, which is a homodimeric alpha-helical protein possessing a small N-terminal DNA binding domain (DNB domain) and a larger C-terminal tetracycline binding and dimerization domain (TBD domain). Based on previous structural and thermodynamic studies, the DNB domains are thought to exist in two stable, distinct conformations. One conformation is able to bind the Tc resistance operator sequence (tetO) with high affinity, while the other, which is induced by Tc binding, binds very weakly. While most previous studies on TetR have focused on the effects of Tc binding on the DNB domain conformation, here I have investigated the role of the DNB domain in modulating Tc binding. By introducing destabilizing mutations into the DNB domain I ascertained that the conformation and stability of the DNB domain plays an important role in determining Tc binding affinity. I also discovered that in the absence of ligand, the DNB domain exists in an unstable and flexible state with respect to the TBD domain. However, Tc binding to the TBD domain stabilizes the DNB domain, causing it to fold cooperatively with the TBD domain. I have discovered that the behavior of previously isolated non-inducible mutants is caused by the inability of Tc to stabilize the DNB domain in these mutants. Furthermore, reverse TetR mutants, which bind DNA better in the presence of Tc have an unfolded DNB domain that is only partially stabilized by Tc binding. My work suggests a new comprehensive, Tc induced stabilization and domain cooperativity model that can describe the mechanism of allostery in TetR and previously unexplainable mutants. A practical outcome of this research is the creation of a Tc induced folding switch that can be exploited to control the in vivo degradation of a protein of interest.
|
109 |
The Tie2 RTK: Regulation and Downstream SignalingSturk, Celina Marie 03 March 2010 (has links)
Tie2 is a receptor tyrosine kinase (RTK) involved in numerous aspects of both normal and pathological angiogenesis. Proper functioning of this receptor is essential for normal development of the vasculature in the embryo as well as vessel maintenance and at sites of active angiogenesis in the adult. A growing list of pathological states has been attributed to a disruption of the angiogenic ‘balance’ including psoriasis, arthritis, atherosclerosis and diabetic retinopathy. Elucidating the molecular mechanisms behind this important biological process will provide insight into the various molecules involved as well as provide potential targets for novel angiogenic therapies.
In an attempt to better understand the signaling pathways downstream of the Tie2 receptor we have studied tyrosine residues on the receptor believed to play an important role in Tie2 function. Of these, we have identified Y1111 as a negative regulatory site on Tie2. Mutation of this site affects receptor phosphorylation and kinase activity. Furthermore, protease digestion studies indicate that mutation of Y1111 may alter receptor conformation and potentially relieve negative inhibition imparted by the C-tail of Tie2.
As well, we examined potential Tie2 downstream binding partners, specifically the novel Grb7 family of proteins. This work describes for the first time tyrosine phosphorylation of Grb14, an adaptor molecule previously shown to bind Tie2 in vitro. Moreover, our data suggests a role for this adaptor in Tie2 signal transduction involving two tyrosine residues in the receptor C-terminal tail; Y1100 and Y1106.
These studies provide important insight into both signal transduction downstream of Tie2 as well as help us understand some of the molecular mechanisms behind the intrinsic ability of this RTK to regulate its own activity.
|
110 |
Elucidating the Role of Fli-1 in Normal Development and Malignant TransformationVecchiarelli-Federico, Laura Marie 26 July 2013 (has links)
Previous studies of genes associated with retroviral-induced neoplasia have provided the foundation for much of our current knowledge of both tumor suppressor and oncogenes, and have contributed to our understanding of both gene function and malignant transformation. The study of Friend virus-induced erythroleukemia, a well-studied example of multistage malignancy, has led to the identification of several oncogenes, including the Ets transcription factor, fli-1. Fli-1 plays a vital role in hematopoiesis, and vasculogenesis through the transcriptional regulation of its target genes, some of which are critical for the control of cellular proliferation, differentiation, and survival. The aberrant regulation of Fli-1 is associated with a number of cancers and human diseases, including erythroleukemia, Ewing’s sarcoma, lupus, and Jacobsen or Paris Trousseau syndrome. The essential goal set out to be achieved by the research presented herein is to establish a better understanding of both the oncogenic and developmental roles of Fli-1 by investigating the molecular basis by which its deregulated expression leads to fundamental aberration in the fine balance between proliferation and differentiation.
|
Page generated in 0.0459 seconds