• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 180
  • 97
  • 45
  • 41
  • 21
  • 1
  • Tagged with
  • 408
  • 266
  • 252
  • 204
  • 204
  • 204
  • 82
  • 68
  • 44
  • 37
  • 34
  • 32
  • 32
  • 32
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Verdazyl Radicals as Substrates for the Synthesis of Novel Nitrogen-containing Heterocycles

Dang, Jeremy 16 September 2011 (has links)
The emergence of verdazyl radicals as starting materials for organic synthesis is providing a unique opportunity to create a variety of distinctive heterocyclic scaffolds. These stable radicals have previously been used as spin probes, polymerization inhibitors, mediators of living radical polymerizations, and as substrates for molecular-based magnets. However, verdazyl radicals have never been employed to fulfill an organic synthetic role until recently. In an effort to pioneer the chemistry behind verdazyl radicals as novel organic substrates, our lab has been inspired to expand and explore the scope of reactions involving their synthetic utility. This thesis assesses the synthetic versatility of verdazyl radicals by constructing a library of structurally complex and diverse verdazyl-derived heterocycles in an approach called diversity-oriented synthesis. The synthetic versatility was further expanded to the preparation of a biphenyl-stacked biphenylophane, which exhibited interesting structural and conformational features as highlighted herein.
172

Synthesis of Caseinolytic Protease Agonists Towards the Synthesis of the Natural Acyldepsipeptides

Cossette, Michele 30 November 2011 (has links)
Caseinolytic protease (ClpP) is a cylindrical protease forming the core of protein degradation machinery in eubacteria. ClpP is tightly regulated and is non-functional without a member of the Clp-ATPases. A new class of antibiotics, termed ADEPs, bind to ClpP and allow for activation without the Clp-ATPases; leading to cell death. A more efficient synthetic route to the ADEPs utilizing solid-phase peptide synthesis was investigated. A linear peptide was synthesized, however attempts to close the depsipeptidic macrocycle via macrolactonization failed. Further attempts of assembling a branched depsipeptide for ring closure via a macrolactamization resulted in products that were not stable to cleavage conditions. A group of molecules termed Activators of Self-Compartmentalizing Proteases (ACP) were identified through a screen for activity towards ClpP. Compound ACP1 was synthesized along with twelve analogs and their activity towards ClpP evaluated. The project resulted in a compound with a higher activity than its natural product counterpart.
173

Rhodium and Palladium Catalysed Domino Reactions of Alkenyl Pyridines and Alkenyl Pyrazines

Friedman, Adam Alexander 22 November 2013 (has links)
Domino catalysis is an ideal strategy in the synthesis of heterocyclic scaffolds, as multiple bonds can be formed under a single set of reaction conditions. In this work, we present the development of two novel domino processes which afford access to aza-analogues of the dihydrodibenzoxepine motif. Careful optimisation revealed that the Rh catalysed hydroarylation proceeds under mild conditions as compared to the C-O coupling. Furthermore, Pd was not required for the C-O bond formation when using alkenyl pyrazines as substrates. Variation of the substituents on both the heterocycle and on the boronic ester provided insight into the structural features required for successful domino reaction, and a stepwise protocol was developed for incompatible substrates. We have also developed the first multi-metal, multi-ligand domino reaction featuring both a chiral and achiral ligand in the same pot, still leading to an enantioenriched product.
174

Stereoselective Synthesis of Nitrogen Containing Compounds from Hydroxy Allylic Azides

Tjeng, Andy 19 November 2013 (has links)
This thesis describes research conducted since September 2006 in Prof. Robert Batey’s laboratory. The thesis is divided into four chapters. Chapter one presents a general introduction of domino reactions, sigmatropic rearrangements, and the allylic azide rearrangement. Several factors affecting the allylic azide rearrangement along with some respective examples are presented. Chapter two describes an efficient synthesis of azido unsaturated ester compounds using a microwave-assisted domino allylic azide / Johnson-Claisen rearrangement. The domino rearrangement reaction proceeds to give the azido ester compounds in good yield and excellent diastereoselectivity. The synthesis of vinyl epoxides and hydroxy allylic azides starting materials are also presented. In addition, other variants of Claisen rearrangements are briefly discussed. Chapter three describes a microwave-assisted domino allylic azide / Overman rearrangement process. The scope of the domino rearrangements, including an example involving an enantioenriched compound, is presented. The product of the domino rearrangements can be used as precursors to 1,2-vicinal diamines. Several functional group transformations and potential application of the product of the domino rearrangement are also described. Chapter four provides the synthesis of cis-2,5-disubstituted pyrrolidines from domino reduction / cyclization of γ-azido-α,β-unsaturated ketones. The overall process involves hydrogenation of the alkene and the azido group, followed by intramolecular cyclization and loss of H2O to form an imine, which is further reduced to give cis-2,5-disubstituted pyrrolidines. The reaction proceeds cleanly to give the products in high yield and with a very high diastereoselectivity ratio. In addition, the formation of pyrrolidinones via domino reduction / cyclication of γ-azido esters are also reported
175

Stereoselective Synthesis of Nitrogen Containing Compounds from Hydroxy Allylic Azides

Tjeng, Andy 19 November 2013 (has links)
This thesis describes research conducted since September 2006 in Prof. Robert Batey’s laboratory. The thesis is divided into four chapters. Chapter one presents a general introduction of domino reactions, sigmatropic rearrangements, and the allylic azide rearrangement. Several factors affecting the allylic azide rearrangement along with some respective examples are presented. Chapter two describes an efficient synthesis of azido unsaturated ester compounds using a microwave-assisted domino allylic azide / Johnson-Claisen rearrangement. The domino rearrangement reaction proceeds to give the azido ester compounds in good yield and excellent diastereoselectivity. The synthesis of vinyl epoxides and hydroxy allylic azides starting materials are also presented. In addition, other variants of Claisen rearrangements are briefly discussed. Chapter three describes a microwave-assisted domino allylic azide / Overman rearrangement process. The scope of the domino rearrangements, including an example involving an enantioenriched compound, is presented. The product of the domino rearrangements can be used as precursors to 1,2-vicinal diamines. Several functional group transformations and potential application of the product of the domino rearrangement are also described. Chapter four provides the synthesis of cis-2,5-disubstituted pyrrolidines from domino reduction / cyclization of γ-azido-α,β-unsaturated ketones. The overall process involves hydrogenation of the alkene and the azido group, followed by intramolecular cyclization and loss of H2O to form an imine, which is further reduced to give cis-2,5-disubstituted pyrrolidines. The reaction proceeds cleanly to give the products in high yield and with a very high diastereoselectivity ratio. In addition, the formation of pyrrolidinones via domino reduction / cyclication of γ-azido esters are also reported
176

Verdazyl Radicals as Mediators in Living Radical Polymerizations and as Novel Substrates for Heterocyclic Syntheses

Chen, Eric Kuan-Yu 05 August 2010 (has links)
Verdazyl radicals are a family of multicoloured stable free radicals. Aside from the defining backbone of four nitrogen atoms, these radicals contain multiple highly modifiable sites that grant them a high degree of derivatization. Despite having been discovered more than half a century ago, limited applications have been found for the verdazyl radicals and little is known about their chemistry. This thesis begins with an investigation to determine whether verdazyl radicals have a future as mediating agents in living radical polymerizations and progresses to their application as substrates for organic synthesis, an application that to date has not been pursued either with verdazyl or nitroxide stable radicals. The first part of this thesis describes the successful use of the 1,5-dimethyl-3-phenyl-6-oxoverdazyl radical as a mediating agent for styrene and n-butyl acrylate stable free radical polymerizations. The study of other verdazyl derivatives demonstrated the impact of steric and electronic properties of the verdazyl radicals on their ability to mediate polymerizations. The second part of this thesis outlines the initial discovery and the mechanistic elucidation of the transformation of the 1,5-dimethyl-3-phenyl-6-oxoverdazyl radical into an azomethine imine, which in the presence of dipolarophiles, undergoes a [3+2] 1,3-dipolar cycloaddition reaction to yield unique pyrazolotetrazinone structures. The reactivity of the azomethine imine and the scope of the reaction were also examined. The third part of this thesis describes the discovery and mechanistic determination of a base-induced rearrangement reaction that transforms the verdazyl-derived pyrazolotetrazinone cycloadducts into corresponding pyrazolotriazinones or triazole structures. The nucleophilicity, or the lack thereof, of the base employed leading to various rearrangement products was examined in detail. The final part of this thesis demonstrates the compatibility of the verdazyl-initiated cycloaddition and rearrangement reactions with the philosophy of diversity-oriented synthesis in generating libraries of heterocycles. A library of verdazyl-derived heterocycles was generated in a short amount of time and was tested non-specifically for biological activity against acute myeloid leukemia and multiple myeloma cell lines. One particular compound showed cell-killing activity at the 250 mM range, indicating future potential for this chemistry in the field of drug discovery.
177

Verdazyl Radicals as Substrates for the Synthesis of Novel Nitrogen-containing Heterocycles

Dang, Jeremy 16 September 2011 (has links)
The emergence of verdazyl radicals as starting materials for organic synthesis is providing a unique opportunity to create a variety of distinctive heterocyclic scaffolds. These stable radicals have previously been used as spin probes, polymerization inhibitors, mediators of living radical polymerizations, and as substrates for molecular-based magnets. However, verdazyl radicals have never been employed to fulfill an organic synthetic role until recently. In an effort to pioneer the chemistry behind verdazyl radicals as novel organic substrates, our lab has been inspired to expand and explore the scope of reactions involving their synthetic utility. This thesis assesses the synthetic versatility of verdazyl radicals by constructing a library of structurally complex and diverse verdazyl-derived heterocycles in an approach called diversity-oriented synthesis. The synthetic versatility was further expanded to the preparation of a biphenyl-stacked biphenylophane, which exhibited interesting structural and conformational features as highlighted herein.
178

New Synthetic Applications of Rhodium-Catalyzed Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions

Tsui, Chit 13 August 2013 (has links)
This thesis is divided into four chapters that describe the new development in rhodium-catalyzed addition reactions and asymmetric ring opening (ARO) reactions of strained alkenes. Chapter 1 describes a regioselective Rh(I)-catalyzed addition reaction of arylboronic acids to unactivated alkenes - protected allylic amines and allyl sulfones. These formal hydroarylation processes have significantly advanced the substrate scope. Comprehensive studies were carried out to optimize the reaction conditions and a wide range of arylboronic acids were employed. The reaction was found to be linear-selective and a mechanism based on functional group- directing effects has been proposed. Chapter 2 discloses the discovery of Rh(I)-catalyzed addition of arylboronic acids to (benzyl- /arylsulfonyl)acetonitriles. Novel β-sulfonylvinylamine products were formed in a stereoselective fashion (Z-alkene). Upon hydrolysis, β-keto sulfones were obtained with a broad scope of aryl and sulfonyl substituents. These (Z)-β-sulfonylvinylamines were useful synthons in the synthesis of unsymmetrical polysubstituted pyridines via 1-aza-allyl anion intermediates as well as 1,4- benzothiazine derivatives via intramolecular cyclization. Chapter 3 reports the use of two new nucleophiles in Rh(I)-catalyzed ARO of oxabicyclic alkenes - water and triethylamine trihydrofluoride. In the water-induced ARO, an unprecedented domino ARO/isomerization process was discovered which led to the formation of 2-hydroxy-1- tetralones. By modifying the reaction conditions, trans-1,2-diols can be obtained in excellent enantioselectivity. Using triethylamine trihydrofluoride as a nucleophile, an aliphatic C-F bond was constructed enantioselectively in the ring-opening process which provided fluorinated building blocks containing both allylic fluoride and fluorohydrin units. Finally, Chapter 4 details the development of a one-pot synthesis of a chiral dihydrobenzofuran framework using Rh-catalyzed asymmetric ring opening and Pd-catalyzed C-O coupling. The product can be obtained in excellent enantioselectivity without isolation of intermediates. Systematic metal-ligand studies were carried out to investigate the compatibility of each catalytic system using product enantiopurity as an indicator.
179

New Synthetic Applications of Rhodium-Catalyzed Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions

Tsui, Chit 13 August 2013 (has links)
This thesis is divided into four chapters that describe the new development in rhodium-catalyzed addition reactions and asymmetric ring opening (ARO) reactions of strained alkenes. Chapter 1 describes a regioselective Rh(I)-catalyzed addition reaction of arylboronic acids to unactivated alkenes - protected allylic amines and allyl sulfones. These formal hydroarylation processes have significantly advanced the substrate scope. Comprehensive studies were carried out to optimize the reaction conditions and a wide range of arylboronic acids were employed. The reaction was found to be linear-selective and a mechanism based on functional group- directing effects has been proposed. Chapter 2 discloses the discovery of Rh(I)-catalyzed addition of arylboronic acids to (benzyl- /arylsulfonyl)acetonitriles. Novel β-sulfonylvinylamine products were formed in a stereoselective fashion (Z-alkene). Upon hydrolysis, β-keto sulfones were obtained with a broad scope of aryl and sulfonyl substituents. These (Z)-β-sulfonylvinylamines were useful synthons in the synthesis of unsymmetrical polysubstituted pyridines via 1-aza-allyl anion intermediates as well as 1,4- benzothiazine derivatives via intramolecular cyclization. Chapter 3 reports the use of two new nucleophiles in Rh(I)-catalyzed ARO of oxabicyclic alkenes - water and triethylamine trihydrofluoride. In the water-induced ARO, an unprecedented domino ARO/isomerization process was discovered which led to the formation of 2-hydroxy-1- tetralones. By modifying the reaction conditions, trans-1,2-diols can be obtained in excellent enantioselectivity. Using triethylamine trihydrofluoride as a nucleophile, an aliphatic C-F bond was constructed enantioselectively in the ring-opening process which provided fluorinated building blocks containing both allylic fluoride and fluorohydrin units. Finally, Chapter 4 details the development of a one-pot synthesis of a chiral dihydrobenzofuran framework using Rh-catalyzed asymmetric ring opening and Pd-catalyzed C-O coupling. The product can be obtained in excellent enantioselectivity without isolation of intermediates. Systematic metal-ligand studies were carried out to investigate the compatibility of each catalytic system using product enantiopurity as an indicator.
180

Expansion de la réaction de Mitsunobu par l’introduction d’un nouveau réactif polyvalent

Dauphinais, Maxime 08 1900 (has links)
No description available.

Page generated in 0.47 seconds