111 |
Modeling the Effective Thermal Conductivity of an Anisotropic and Heterogeneous Polymer Electrolyte Membrane Fuel Cell Gas Diffusion LayerYablecki, Jessica 27 November 2012 (has links)
In this thesis, two numerical modeling methods are used to investigate the thermal conductivity of the polymer electrolyte membrane (PEM) fuel cell gas diffusion layer (GDL). First, an analytical model is used to study the through-plane thermal conductivity from representative physical GDL models informed by microscale computed tomography imaging of four commercially available GDL materials. The effect of the heterogeneity of the through-plane porosity of the GDL and polytetrafluoroethylene (PTFE) treatment is studied and it is noted that the high porosity surface transition regions have a dominating effect over the addition of PTFE in impacting the overall thermal conductivity. Next, the lattice Boltzmann method (LBM) is employed to study both the in-plane and through-plane thermal conductivity of stochastic numerically generated GDL modeling domains. The effect of GDL compression, binder content, PTFE treatment, addition of a microporous layer (MPL), heterogeneous porosity distributions, and water saturation on the thermal conductivity are investigated.
|
112 |
Experimental Investigation of the Effects of Fuel Aging on Combustion Performance and Emissions of Biomass Fast Pyrolysis Liquid-Ethanol Blends in a Swirl BurnerZarghami-Tehran, Milad 27 November 2012 (has links)
Biomass fast pyrolysis liquid is a renewable fuel for stationary heat and power generation; however degradation of bio-oil by time, a.k.a. aging, has an impact on combustion performance and emissions. Moreover, the temperature at which bio-oil is stored has a strong effect on the degradation process. In this study, the same biooil-ethanol blends with different storage conditions are tested in a pilot stabilized spray burner under the same flow conditions. Measurements were made of the steady state gas phase emissions and particulate matter, as well as visual inspection of flame stability. The results confirm a relationship between room temperature storage time and storage at higher temperatures (accelerated aging). They also show that fuel aging increases the emissions of carbon monoxide, unburned hydrocarbon and the organic fraction of particulate matter. These emissions increase more rapidly as more time is allocated for aging. NOx emission shows a slight decrease with fuel aging.
|
113 |
Blood Filtration for Multiplexed Point-of-care Diagnostic DevicesPham, Ngoc Minh 29 November 2012 (has links)
In the developing world, there are large populations suffering from infectious diseases, many of whom are located in remote regions. With the rapid growth in microfluidic systems in recent years, complex functions of conventional diagnostic equipment have been miniaturized and integrated into small devices at the size of a credit card (so-called portable Point-of-care (POC) devices).
In this thesis a novel approach to overcoming the challenge of in-field biological sample processing and preparation to produce high quality fluids that can be readily used for downstream testings is described and proof of concept experiments presented. This approach uses hydrodynamic effects and combines nanoporous membrane with microfluidic systems and to filter the cellular component of blood. Experiments presented here demonstrate successful cells filtration from whole blood. Employing hydrodynamic effects is also shown to be an effective and potentially useful technique to isolate cells and plasma within appropriate micro-architectures.
|
114 |
Chipping and Wear of Glass Edges by the Low VelocityIimpact of Spherical ParticlesMohajerani, Amirhossein 31 August 2011 (has links)
The edge rounding of brittle materials by vibratory finishing, VF, was investigated. Borosilicate glass and silicon nitride specimens were processed in two typical VF setups. In all cases, the processed specimens exhibited wear and chipping at their edges, whereas their flat surfaces remained intact. Edge chipping was strongly affected by the edge geometry and process parameters such as the media size and vibration amplitude of the finisher. Therefore, to achieve smooth chip-less edge, samples were processed in several steps, starting with the least energetic conditions, followed by more energetic ones as the edge became progressively blunter. The analysis of edge wear by VF revealed a new mechanism of wear, not previously reported in the literature. A stochastic numerical model was subsequently developed to model this mechanism of wear. To confirm the validity of the model, the model predictions were compared to the experimental observations of wear in the vibratory finisher. The model was used to investigate the effect of various VF process parameters on the edge wear of brittle materials.
A VF simulator was used to investigate wear and chipping under more controlled conditions. The VF simulator launched particles against the specimens at adjustable velocities and impact angles. The effect of particles’ shape, and impact velocity and angle, on the wear of glass edges was investigated. Fundamental differences were observed between wear by abrasive and smooth particles. These differences were attributed to the mechanisms of material removal by abrasive
iii
and smooth balls. Abrasive balls remove material by the sharp indentation of their surface asperities, whereas smooth particles lack such sharp peaks and hence apply blunt indentation on the edges. To identify the fundamental differences between material removal by sharp and blunt indenters, a series of indentation experiments were carried out on glass edges. Subsequently, these differences were discussed in terms of their implications on wear by abrasive and smooth particles.
|
115 |
The Effects of Crosslinking on Foaming of EVAChen, Nan 20 August 2012 (has links)
The effects of crosslinking on EVA foaming are studied in this thesis. A fundamental approach was applied to describe the influences of crosslinking on EVA/gas viscosities, gas solubility and diffusivity in EVA, EVA foaming nucleation and early stage of bubble growth, which leads to a better understanding of the plastic foaming mechanism.
Although crosslinked polyolefin foaming technology has been well applied in industry, more fundamental and thorough studies are demanded to understand the mechanism, which can serve to improve the present technology. The shear and extensional viscosities have been measured for the chemically crosslinked EVA with dissolved gas which could not be found from literature. Furthermore, by controlling the crosslinking agent amount, the polymer melt strength/viscosity can be controlled, so as to obtain optimum foam morphology. The crosslinking also has effects on the diffusivity and solubility of a blowing agent inside EVA. The solubility and the diffusivity of the blowing agent in the EVA decrease with the crosslinking degree increases. The diffusivity decrease makes more gas is utilized for the foaming rather than leak out of the polymer matrix quickly.
This thesis also presents the fundamental studies on the effects of crosslinking on cell nucleation and early bubble growth. Theoretical work and in-situ visualization experimental results indicate that partial crosslinking leads to higher cell nucleation density and slower bubble growth, both of which benefit a fine-cell foam morphology generation.
Last but not least, an optimized foaming process was conducted to produce chemically crosslinked EVA foams with large expansion ratios in a batch system, using a chemical blowing agent. The results determine that an optimal crosslinking degree is critical for the crosslinked EVA foaming with maximum expansion ratio. Furthermore, all research results not only benefit the foaming of crosslinked EVA, but also serve the better production of other crosslinked polyolefin foams.
|
116 |
An Investigation of Metal and Ceramic Thermal Barrier Coatings in a Spark-ignition EngineMarr, Michael Anderson 15 February 2010 (has links)
Surface temperature and heat flux measurements were made in a single cylinder SI engine piston when uncoated and with two different surface coatings: a metal TBC and YSZ. A new thermocouple was developed to accurately measure surface temperatures. The engine was operated in a standard full load mode and a knock promoting mode featuring heated intake air and advanced spark timing. Cylinder pressures were measured to quantify knock.
It was found that average heat flux into the piston substrate was 33 % higher with the metal TBC and unchanged with the YSZ relative to the uncoated surface. The increase with the metal TBC was attributed to its surface roughness. However, the metal TBC and YSZ reduced peak heat flux by 69 and 77 %, respectively. Both the metal TBC and YSZ reduced knock compared to the uncoated surface. After testing, the metal TBC was undamaged and the YSZ was slightly chipped.
|
117 |
Chipping and Wear of Glass Edges by the Low VelocityIimpact of Spherical ParticlesMohajerani, Amirhossein 31 August 2011 (has links)
The edge rounding of brittle materials by vibratory finishing, VF, was investigated. Borosilicate glass and silicon nitride specimens were processed in two typical VF setups. In all cases, the processed specimens exhibited wear and chipping at their edges, whereas their flat surfaces remained intact. Edge chipping was strongly affected by the edge geometry and process parameters such as the media size and vibration amplitude of the finisher. Therefore, to achieve smooth chip-less edge, samples were processed in several steps, starting with the least energetic conditions, followed by more energetic ones as the edge became progressively blunter. The analysis of edge wear by VF revealed a new mechanism of wear, not previously reported in the literature. A stochastic numerical model was subsequently developed to model this mechanism of wear. To confirm the validity of the model, the model predictions were compared to the experimental observations of wear in the vibratory finisher. The model was used to investigate the effect of various VF process parameters on the edge wear of brittle materials.
A VF simulator was used to investigate wear and chipping under more controlled conditions. The VF simulator launched particles against the specimens at adjustable velocities and impact angles. The effect of particles’ shape, and impact velocity and angle, on the wear of glass edges was investigated. Fundamental differences were observed between wear by abrasive and smooth particles. These differences were attributed to the mechanisms of material removal by abrasive
iii
and smooth balls. Abrasive balls remove material by the sharp indentation of their surface asperities, whereas smooth particles lack such sharp peaks and hence apply blunt indentation on the edges. To identify the fundamental differences between material removal by sharp and blunt indenters, a series of indentation experiments were carried out on glass edges. Subsequently, these differences were discussed in terms of their implications on wear by abrasive and smooth particles.
|
118 |
A Multi-Robot Coordination Methodology for Wilderness Search and RescueMacwan, Ashish 13 January 2014 (has links)
One of the applications where the use of robots can be beneficial is Wilderness Search and Rescue (WiSAR), which involves the search for a possibly mobile but non-trackable lost person (i.e., the target) in wilderness environments. A mobile target implies that the search area grows continuously and potentially without bound. This fact, combined with the presence of typically rugged, varying terrain and the possibility of inclement weather, poses a considerable challenge to human Search and Rescue (SAR) personnel with respect to the time and effort required to perform the search and the danger entailed to the searchers. Mobile robots can be advantageous in WiSAR due to their ability to provide consistent performance without getting tired and their lower susceptibility to harsh weather conditions compared to humans. Thus, a coordinated team of robots that can assist human SAR personnel by autonomously performing searches in WiSAR scenarios would be of great value. However, to date, a suitable multi-robot coordination methodology for autonomous search that can satisfactorily address the issues relevant to WiSAR is lacking.
The objective of this Dissertation is, thus, to develop a methodology that can autonomously coordinate the search strategy of a multi-robot team in wilderness environments to locate a moving target that is neither continuously nor intermittently observed during the search process. Three issues in particular are addressed: (i) target-location prediction, (ii) robot deployment, and (iii) robot-path planning. The corresponding solution approaches devised to address these issues incorporate the influence of varying terrain that may contain a priori known and unknown obstacles, and deal with unique target physiology and psychology as well as found clues left behind by the target. The solution methods for these three tasks work seamlessly together resulting in a tractable MRC methodology for autonomous robotic WiSAR.
Comprehensive simulations have been performed that validate the overall proposed methodology. Moreover, the tangible benefits provided by this methodology were further revealed through its comparison with an alternative search method.
|
119 |
Fabrication of Metal-supported Solid Oxide Fuel Cell Electrolytes by Liquid-feed Plasma SprayingMarr, Michael Anderson 13 January 2014 (has links)
Research was performed on the development of metal-supported solid oxide fuel cell (SOFC) electrolytes by suspension and solution precursor plasma spraying (SPS and SPPS). Experiments were conducted to understand the effects of many plasma-, feedstock-, and substrate-related process parameters on the microstructure, permeability, and conductivity of the resulting coatings. Most work was performed with yttria-stabilized zirconia (YSZ), but samaria-doped ceria (SDC) was also considered.
The plasma-to-substrate heat flux behaviour of the process is particularly relevant for producing dense electrolytes with low segmentation cracking. Heat flux profiles for various processing conditions were experimentally determined and then used to model temperature distributions in the electrolyte and substrate during deposition. The results showed a strong correlation between segmentation crack severity and the peak temperature difference between the electrolyte surface and the metal support during deposition.
Building on these findings, two strategies were developed for improving electrolyte performance. The first strategy is to use a bi-layer electrolyte structure, in which one layer is dense but has segmentation cracks and the other layer is more porous but contains relatively few segmentation cracks. A cell with a bi-layer electrolyte achieved a peak power density of 0.718 W cm-2 at 750 °C using hydrogen as fuel.
The second strategy involves reducing the thickness and roughness of the electrode on which the electrolyte is deposited, which first required the development of improved metal supports. A thinner electrode reduces the thermal stresses that drive segmentation cracking and a smoother surface minimizes the formation of concentrated porosity. A cell with a 16 μm thick anode and a 21 μm thick electrolyte achieved an open circuit voltage (OCV) of 1.053 V, a series resistance of 0.284 Ω cm2, and a peak power density of 0.548 W cm-2 at 750 °C using hydrogen as fuel. A separate cell with a 28 μm thick electrolyte achieved an OCV of 1.068 V. At the end of the thesis, cell performance is compared to that of state-of-the-art cells produced in other facilities and using other production methods.
|
120 |
Continuous Extrusion of Homogeneous and Heterogeneous Hydrogel TubesMcAllister, Arianna 19 March 2014 (has links)
We present a platform that allows homogeneous and heterogeneous 3-D soft materials to be continuously defined in a single step. Biopolymer solutions are introduced to a microfluidic device and radially distributed to feed to a common outlet at the device center. This forms concentric sheaths of complex fluids and upon crosslinking, a hydrogel tube at the exit. This approach allows for the controlled and continuous extrusion of tubes with tailored diameters of 500 μm to 1500 μm, wall thicknesses of 20 μm to 120 μm, and compositions, as well as predictable mechanical and chemical properties. Using the same platform, single and multi-walled hydrogel tubes with defined heterogeneities and patterns of discrete spots of secondary biopolymer materials can be continuously extruded. A tube-hosting device is presented which can independently perfuse and superfuse isolated tube segments, allowing precise microenvironmental control without cannulation for up to an hour.
|
Page generated in 0.0237 seconds