Spelling suggestions: "subject:"05990 applicatications"" "subject:"05990 applicationoptions""
1 |
Approval Voting in Box SocietiesEschenfeldt, Patrick 31 May 2012 (has links)
Under approval voting, every voter may vote for any number of canditates. To model approval voting, we let a political spectrum be the set of all possible political positions, and let each voter have a subset of the spectrum that they approve, called an approval region. The fraction of all voters who approve the most popular position is the agreement proportion for the society. We consider voting in societies whose political spectrum is modeled by $d$-dimensional space ($\mathbb{R}^d$) with approval regions defined by axis-parallel boxes. For such societies, we first consider a Tur&#aacute;n-type problem, attempting to find the maximum agreement between pairs of voters for a society with a given level of overall agreement. We prove a lower bound on this maximum agreement and find in the literature a proof that the lower bound is optimal. By this result we find that for sufficiently large $n$, any $n$-voter box society in $\mathbb{R}^d$ where at least $\alpha\binom{n}{2}$ pairs of voters agree on some position must have a position contained in $\beta n$ approval regions, where $\alpha = 1-(1-\beta)^2/d$. We also consider an extension of this problem involving projections of approval regions to axes. Finally we consider the question of $(k,m)$-agreeable box societies, where a society is said to be $(k, m)$-agreeable if among every $m$ voters, some $k$ approve a common position. In the $m = 2k - 1$ case, we use methods from graph theory to prove that the agreement proportion is at least $(2d)^{-1}$ for any integer $k \ge 2.$
|
2 |
Approval Voting Theory with Multiple Levels of ApprovalBurkhart, Craig 31 May 2012 (has links)
Approval voting is an election method in which voters may cast votes for as many candidates as they desire. This can be modeled mathematically by associating to each voter an approval region: a set of potential candidates they approve. In this thesis we add another level of approval somewhere in between complete approval and complete disapproval. More than one level of approval may be a better model for a real-life voter's complex decision making. We provide a new definition for intersection that supports multiple levels of approval. The case of pairwise intersection is studied, and the level of agreement among voters is studied under restrictions on the relative size of each voter's preferences. We derive upper and lower bounds for the percentage of agreement based on the percentage of intersection.
|
Page generated in 0.1172 seconds