• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 282
  • 8
  • 4
  • 3
  • Tagged with
  • 300
  • 65
  • 57
  • 38
  • 38
  • 33
  • 32
  • 30
  • 29
  • 28
  • 27
  • 26
  • 24
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

The mechanism of death evoked by human amylin in pancreatic islet B cells

Bai, Ji Zhong January 1999 (has links)
Whole document restricted, see Access Instructions file below for details of how to access the print copy. Subscription resource available via Digital Dissertations / Amylin is a 37-amino acid peptide usually cosecreted with insulin from pancreatic islet β-cells. It is implicated in the regulation of normal glucose metabolism and thought to induce pathological features of non-insulin-dependent diabetes mellitus (NIDDM). In particular, human amylin (hA) deposits as islet amyloid, and is associated with the loss of insulin-producing islet β-cells in NIDDM. The biochemical mechanism of hA-evoked death in cultured RINm5F pancreatic islet β-cells has been investigated in this thesis. Synthetic hA but not rat amylin (rA) aggregated in aqueous solution, formed fibrils, and evoked β-cell death in a time- and concentration-dependent manner. The cell death exhibited apoptotic features, including inter-nucleosomal DNA fragmentation, mitochondrial dysfunction, delayed membrane lysis, aurintricarboxylic acid suppression and cell membrane blebbling. Cytotoxicity of hA was inhibited by Congo red (an amyloid-binding dye), 8-37hA fragment (fibril-forming but non-toxic), 1-40βA or 25-35βA (Alzheimer-associated peptide), but neither by sorbitol (inhibitory to hA fibril formation), rA nor its 8-37rA peptide (non-fibril-forming and non-toxic). Preformed large amyloid deposits of hA were less potent in causing β-cell death than small aggregates. These data suggest that hA induces β-cell apoptosis via small aggregates through a possible membrane receptor pathway. Inhibitors of protein and mRNA synthesis did not inhibit hA-evoked apoptosis, but rather enhanced or directly triggered β-cell death during prolonged exposure. Likewise, Ca2+ modulators, which alter intracellular free Ca2+ concentration ([Ca2+]i), failed to prevent hA cytotoxicity and were ultimately cytotoxic themselves. Fura-2 loading and 45Ca2+ uptake studies indicated that hA did not mobilise intracellular Ca2+ during its toxicity. These results indicate a protein synthesis- and Ca2+-independent process of hA toxicity RINm5F islet β-cells. The studies reported in this thesis have established a new in vitro model of hA-evoked apoptosis using cultured RINm5F pancreatic islet β-cells. A new model of NIDDM pathogenesis is presented and discussed.
122

The mechanism of death evoked by human amylin in pancreatic islet B cells

Bai, Ji Zhong January 1999 (has links)
Whole document restricted, see Access Instructions file below for details of how to access the print copy. Subscription resource available via Digital Dissertations / Amylin is a 37-amino acid peptide usually cosecreted with insulin from pancreatic islet β-cells. It is implicated in the regulation of normal glucose metabolism and thought to induce pathological features of non-insulin-dependent diabetes mellitus (NIDDM). In particular, human amylin (hA) deposits as islet amyloid, and is associated with the loss of insulin-producing islet β-cells in NIDDM. The biochemical mechanism of hA-evoked death in cultured RINm5F pancreatic islet β-cells has been investigated in this thesis. Synthetic hA but not rat amylin (rA) aggregated in aqueous solution, formed fibrils, and evoked β-cell death in a time- and concentration-dependent manner. The cell death exhibited apoptotic features, including inter-nucleosomal DNA fragmentation, mitochondrial dysfunction, delayed membrane lysis, aurintricarboxylic acid suppression and cell membrane blebbling. Cytotoxicity of hA was inhibited by Congo red (an amyloid-binding dye), 8-37hA fragment (fibril-forming but non-toxic), 1-40βA or 25-35βA (Alzheimer-associated peptide), but neither by sorbitol (inhibitory to hA fibril formation), rA nor its 8-37rA peptide (non-fibril-forming and non-toxic). Preformed large amyloid deposits of hA were less potent in causing β-cell death than small aggregates. These data suggest that hA induces β-cell apoptosis via small aggregates through a possible membrane receptor pathway. Inhibitors of protein and mRNA synthesis did not inhibit hA-evoked apoptosis, but rather enhanced or directly triggered β-cell death during prolonged exposure. Likewise, Ca2+ modulators, which alter intracellular free Ca2+ concentration ([Ca2+]i), failed to prevent hA cytotoxicity and were ultimately cytotoxic themselves. Fura-2 loading and 45Ca2+ uptake studies indicated that hA did not mobilise intracellular Ca2+ during its toxicity. These results indicate a protein synthesis- and Ca2+-independent process of hA toxicity RINm5F islet β-cells. The studies reported in this thesis have established a new in vitro model of hA-evoked apoptosis using cultured RINm5F pancreatic islet β-cells. A new model of NIDDM pathogenesis is presented and discussed.
123

The mechanism of death evoked by human amylin in pancreatic islet B cells

Bai, Ji Zhong January 1999 (has links)
Whole document restricted, see Access Instructions file below for details of how to access the print copy. Subscription resource available via Digital Dissertations / Amylin is a 37-amino acid peptide usually cosecreted with insulin from pancreatic islet β-cells. It is implicated in the regulation of normal glucose metabolism and thought to induce pathological features of non-insulin-dependent diabetes mellitus (NIDDM). In particular, human amylin (hA) deposits as islet amyloid, and is associated with the loss of insulin-producing islet β-cells in NIDDM. The biochemical mechanism of hA-evoked death in cultured RINm5F pancreatic islet β-cells has been investigated in this thesis. Synthetic hA but not rat amylin (rA) aggregated in aqueous solution, formed fibrils, and evoked β-cell death in a time- and concentration-dependent manner. The cell death exhibited apoptotic features, including inter-nucleosomal DNA fragmentation, mitochondrial dysfunction, delayed membrane lysis, aurintricarboxylic acid suppression and cell membrane blebbling. Cytotoxicity of hA was inhibited by Congo red (an amyloid-binding dye), 8-37hA fragment (fibril-forming but non-toxic), 1-40βA or 25-35βA (Alzheimer-associated peptide), but neither by sorbitol (inhibitory to hA fibril formation), rA nor its 8-37rA peptide (non-fibril-forming and non-toxic). Preformed large amyloid deposits of hA were less potent in causing β-cell death than small aggregates. These data suggest that hA induces β-cell apoptosis via small aggregates through a possible membrane receptor pathway. Inhibitors of protein and mRNA synthesis did not inhibit hA-evoked apoptosis, but rather enhanced or directly triggered β-cell death during prolonged exposure. Likewise, Ca2+ modulators, which alter intracellular free Ca2+ concentration ([Ca2+]i), failed to prevent hA cytotoxicity and were ultimately cytotoxic themselves. Fura-2 loading and 45Ca2+ uptake studies indicated that hA did not mobilise intracellular Ca2+ during its toxicity. These results indicate a protein synthesis- and Ca2+-independent process of hA toxicity RINm5F islet β-cells. The studies reported in this thesis have established a new in vitro model of hA-evoked apoptosis using cultured RINm5F pancreatic islet β-cells. A new model of NIDDM pathogenesis is presented and discussed.
124

The mechanism of death evoked by human amylin in pancreatic islet B cells

Bai, Ji Zhong January 1999 (has links)
Whole document restricted, see Access Instructions file below for details of how to access the print copy. Subscription resource available via Digital Dissertations / Amylin is a 37-amino acid peptide usually cosecreted with insulin from pancreatic islet β-cells. It is implicated in the regulation of normal glucose metabolism and thought to induce pathological features of non-insulin-dependent diabetes mellitus (NIDDM). In particular, human amylin (hA) deposits as islet amyloid, and is associated with the loss of insulin-producing islet β-cells in NIDDM. The biochemical mechanism of hA-evoked death in cultured RINm5F pancreatic islet β-cells has been investigated in this thesis. Synthetic hA but not rat amylin (rA) aggregated in aqueous solution, formed fibrils, and evoked β-cell death in a time- and concentration-dependent manner. The cell death exhibited apoptotic features, including inter-nucleosomal DNA fragmentation, mitochondrial dysfunction, delayed membrane lysis, aurintricarboxylic acid suppression and cell membrane blebbling. Cytotoxicity of hA was inhibited by Congo red (an amyloid-binding dye), 8-37hA fragment (fibril-forming but non-toxic), 1-40βA or 25-35βA (Alzheimer-associated peptide), but neither by sorbitol (inhibitory to hA fibril formation), rA nor its 8-37rA peptide (non-fibril-forming and non-toxic). Preformed large amyloid deposits of hA were less potent in causing β-cell death than small aggregates. These data suggest that hA induces β-cell apoptosis via small aggregates through a possible membrane receptor pathway. Inhibitors of protein and mRNA synthesis did not inhibit hA-evoked apoptosis, but rather enhanced or directly triggered β-cell death during prolonged exposure. Likewise, Ca2+ modulators, which alter intracellular free Ca2+ concentration ([Ca2+]i), failed to prevent hA cytotoxicity and were ultimately cytotoxic themselves. Fura-2 loading and 45Ca2+ uptake studies indicated that hA did not mobilise intracellular Ca2+ during its toxicity. These results indicate a protein synthesis- and Ca2+-independent process of hA toxicity RINm5F islet β-cells. The studies reported in this thesis have established a new in vitro model of hA-evoked apoptosis using cultured RINm5F pancreatic islet β-cells. A new model of NIDDM pathogenesis is presented and discussed.
125

On the Permeabilisation and Disruption of Cell Membranes by Ultrasound and Microbubbles

Karshafian, Raffi 21 April 2010 (has links)
Therapeutic efficacy of drugs depends on their ability to reach the treatment target. Drugs that exert their effect within cells are constrained by an inability to cross the cell membrane. Methods are being developed to overcome this barrier including biochemical and biophysical strategies. The application of ultrasound with microbubbles increases the permeability of cell membranes allowing molecules, which otherwise would be excluded, to enter the intracellular space of cells; a phenomenon known as sonoporation. This thesis describes studies aimed at improving our understanding of the mechanism underpinning sonoporation and of the exposure parameters affecting sonoporation efficiency. Cancer cells (KHT-C) in suspension were exposed to ultrasound and microbubbles – total of 97 exposure conditions. The effects on cells were assessed through uptake of cell-impermeable molecules (10 kDa to 2 MDa FITC-dextran), cell viability and microscopic observations of the plasma membrane using flow cytometry, colony assay and electron microscopy techniques. Sonoporation was a result of the interaction of ultrasound and microbubbles with the cell membrane. Disruptions (30-100 nm) were generated on the cell membrane allowing cell impermeable molecules to cross the membrane. Molecules up to 2 MDa in size were delivered at high efficiency (~70% permeabilisation). Sonoporation was short lived; cells re-established their barrier function within one minute, which allowed compounds to remain inside the cell. Following uptake, cells remained viable; ~50% of sonoporated cells proliferated. Sonoporation efficiency depended on ultrasound and microbubble exposure conditions. Microbubble disruption was a necessary but insufficient indicator of ultrasound-induced permeabilisation. The exposure conditions can be tailored to achieve a desired effect; cell permeability of ~70% with ~25% cell death versus permeability of ~35% with ~2% cell death. In addition, sonoporation depended on position in the cell cycle. Cells in later stages were more prone to being permeabilised and killed by ultrasound and microbubbles. This study indicated that sonoporation can be controlled through exposure parameters and that molecular size may not be a limiting factor. However, the transient nature may necessitate that the drug be in close vicinity to target cells in sonoporation-mediated therapies. Future work will extend the investigation into in vivo models.
126

Aldosterone and its Antagonists Modulate Elastin Deposition in the Heart

Bunda, Severa 20 January 2009 (has links)
Myocardial infarction activates the renin-angiotensin system, consequently upregulating aldosterone production that may stimulate pathological cardiac fibrosis via mineralocorticoid receptor (MR) activation. Results presented in this thesis were derived from an in vitro experimental model using cultures of human cardiac fibroblasts to study the effect of aldosterone on elastin production. They first confirmed that treatment with 1-50 nM of aldosterone leads to a significant increase in collagen type I production via MR activation. Most importantly, we discovered that treatment with 1-50 nM of aldosterone also increases elastin mRNA levels, tropoelastin synthesis, and elastic fiber deposition. Strikingly, pretreatment with MR antagonist spironolactone did not eliminate aldosterone-induced increases in elastin production. Interestingly, while cultures treated with elevated aldosterone concentrations (100 nM and 1 µM) showed a further increase (~3.5-fold) in collagen and (~3-fold) in elastin mRNA levels, they demonstrated subsequent increases only in the net deposition of collagen but not elastin. In fact, cultures treated with elevated aldosterone concentrations displayed a striking decrease in the net deposition of insoluble elastin, which could be reversed with spironolactone or with MMP inhibitors doxycycline or GM6001. Most importantly, we discovered that the pro-elastogenic effect of aldosterone involves a rapid increase in tyrosine phosphorylation of the insulin-like growth factor-I receptor (IGF-IR) and that the IGF-IR kinase inhibitor AG1024 or an anti-IGF-IR neutralizing antibody inhibits both IGF-I- and aldosterone-induced elastogenesis (Bunda et al., Am J Pathol. 171:809-819, 2007). Furthermore, we showed that the PI3 kinase signaling pathway propagates the elastogenic signal following IGF-IR activation and that activation of c-Src is an important prerequisite for aldosterone-dependent facilitation of the IGF-IR/PI3 kinase signaling. Results of explorative microarray analysis of 1 hour aldosterone-treated cultures revealed that aldosterone treatment upregulated expression of a heterotrimeric G protein, Gα13, that activates the PI3 kinase signaling pathway. We additionally demonstrated that aldosterone treatment transiently increases the interaction between Gα13 and c-Src and that siRNA-dependent elimination of Gα13 inhibited the pro-elastogenic effect of aldosterone. In summary, aldosterone, which stimulates collagen production in cardiac fibroblasts through the MR-dependent pathway, also increases elastogenesis via a parallel MR-independent pathway involving the activation of Gα13, c-Src, and IGF-IR/PI3 kinase signaling.
127

The Orphan Nuclear Receptor EAR-2 (NR2F6) is a Leukemia Oncogene and Novel Regulator of Hematopoietic Stem Cell Homeostasis and Differentiation

Ichim, Christine Victoria 13 December 2012 (has links)
The orphan nuclear receptor EAR-2 (NR2F6) is a gene that I previously found to be expressed at a higher level in clonogenic leukemia single cells than in leukemia cells that can not divide. For this thesis I undertook to perform the first investigations of the roles EAR-2 may play in normal haematopoiesis and in the pathogenesis of acute myelogenous leukaemia. Here, I show that EAR-2 is overexpressed in the bone marrow of patients with MDS, AML and CMML compared to healthy controls and that EAR-2 is a gatekeeper to hematopoietic differentiation. Over-expression of EAR-2 prevents the differentiation of cell lines, while knock down induces their spontaneous differentiation. In vitro, primary bone marrow cells that over-express EAR-2 do not differentiate into granulocytes in suspension culture, but have greatly extended replating capacity in colony assays. In vivo, overexpression of EAR-2 in a chimeric mouse model leads to a condition that resembles myelodysplastic syndrome characterised by hypercellular bone marrow, an increase in blasts, abnormal localization of immature progenitors, morphological dysplasia of the erythroid lineage and a competitive advantage over wild-type cells, that eventually leads to AML in a subset of the mice. Furthermore, animals that are transplanted with grafts of sorted bone marrow develop a rapidly fatal leukemia that is characterized by pancytopenia, enlargement of the spleen, infiltration of blasts into the spleen, liver and peripheral blood. Interestingly, development of leukemia is preceded by expansion of the stem cell compartment. Overexpression of EAR-2 increases the maintenance of KSL primitive bone marrow cells in ex vivo suspension culture, while knockdown of EAR-2 induces rapid differentiation of KSL cells into granulocytes. These data establish that EAR-2 is a novel oncogene that regulates hematopoietic cell differentiation. Furthermore, I show that EAR-2 is also a novel negative regulator of T-cell lymphopoiesis, and demonstrate that down-regulation of EAR-2 is important for the survival, proliferation and differentiation of T-cell progenitors. Overall, this work establishes that expression of EAR-2 is an important determinant of cell fate decisions in the hematopoietic system.
128

Programmed Cell Death 4 is a Direct Target of miR-21 and Regulates Invasion in Oral Squamous Cell Carcinoma

Tomenson, Miranda 16 February 2010 (has links)
Programmed Cell Death 4 (PDCD4) is a known tumour suppressor, lost in carcinomas of the breast, prostate, colon, lung and ovary. This study found significantly reduced levels of PDCD4 mRNA and protein in both primary patient oral squamous cell carcinomas (OSCCs) and OSCC cell lines. Moreover, lower PDCD4 mRNA levels were significantly correlated with nodal metastasis (P=0.019). To determine the functional significance of PDCD4 down-regulation in OSCC we asked whether PDCD4 played a role in invasion. In fact, over-expression of PDCD4 decreased invasion of OSCC lines. We then sought to determine a mechanism for PDCD4 down-regulation in OSCC. Previous studies in breast and colon carcinomas suggested that reduced PDCD4 expression was due to over-expression of miR-21. Interestingly, miR-21 was inversely correlated to PDCD4 mRNA (P=0.002) and PDCD4 protein (P<0.001) levels in OSCC patient samples. Moreover, we found that miR-21 directly regulated PDCD4 protein expression in OSCC cell lines. This is the first report in OSCC that demonstrates that PDCD4 is down-regulated by miR-21 and may play a role in OSCC invasion.
129

Two-photon Microscopy and Polarimetry for Assessment of Myocardial Tissue Organization

Archambault-Wallenburg, Marika 14 December 2010 (has links)
Optical methods can provide useful tissue characterization tools. For this project, two-photon microscopy and polarized light examinations (polarimetry) were used to assess the organizational state of myocardium in healthy, infarcted, and stem-cell regenerated states. Two-photon microscopy visualizes collagen through second-harmonic generation and myocytes through two-photon excitation autofluorescence, providing information on the composition and structure/organization of the tissue. Polarimetry measurements yield a value of linear retardance that can serve as an indicator of tissue anisotropy, and with a dual-projection method, information about the anisotropy axis orientation can also be extracted. Two-photon microscopy results reveal that stem-cell treated tissue retains more myocytes and structure than infarcted myocardium, while polarimetry findings suggest that the injury caused by temporary ligation of a coronary artery is less severe and more diffuse that than caused by a permanent ligation. Both these methods show potential for tissue characterization.
130

Development of a Model to Study the Abscopal Effect: Combining Image-guided Radiation Therapy and Immunotherapy in Cancer Treatment

Moretti, Amanda 12 January 2011 (has links)
Distant metastases are a limiting factor in cancer patient survival as they are least accessible to conventional therapies. Effective therapy should treat primary tumours and metastatic disease. Use of image-guided radiation therapy (IGRx) enables high doses of radiation to be delivered for better tumour control while minimizing toxicity to healthy tissues. Systemic effects on distant non-irradiated tissues have been observed following IGRx. This phenomenon, termed the abscopal effect, is hypothesized to be mediated by the immune system. The inflammatory milieu generated following IGRx may activate immune cells to mount specific anti-tumour responses. The work described in this thesis aims to develop a model to study the abscopal effect, and evaluate the potential of combining IGRx and immunotherapy to enhance such distant tumour killing. Results from these studies may have clinical implications, where a combined IGRx and immunotherapy approach may prove useful in eliciting regression of local tumours and distant metastases.

Page generated in 0.0157 seconds