• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 17
  • 13
  • 7
  • 2
  • Tagged with
  • 83
  • 59
  • 51
  • 45
  • 24
  • 17
  • 16
  • 15
  • 15
  • 15
  • 15
  • 13
  • 12
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Improvement of abiotic stress tolerance and calcium-deficiency disorder resistance of tomato plants

Wu, Qingyu January 1900 (has links)
Doctor of Philosophy / Department of Horticulture, Forestry, and Recreation Resources / Sunghun Park / Plants are continuously exposed to numerous abiotic stresses, which adversely affect plant growth, development, and yield. Plants have developed different signaling pathways to cope with abiotic stresses, and some of the pathways converge to help plants tolerate simultaneous stresses. Here, we report ectopic expression of an Arabidopsis glutaredoxin AtGRXS17 that confers tolerance to multiple abiotic stresses in tomato plants. In yeast assays, AtGRXS17 co-localized with yeast ScGrx3 in the nucleus and suppressed the sensitivity of yeast grx3grx4 double mutants to oxidative stress and heat shock. In plants, GFP-AtGRXS17 fusion proteins initially localized in the cytoplasm but migrated to the nucleus during heat stress. Ectopic expression of AtGRXS17 in tomato plants minimized photo-oxidation of chlorophyll and reduced oxidative damage of cell membrane systems under heat stress. Furthermore, expression of the heat shock transcription factor (HSF) and heat shock protein (HSP) genes was up-regulated in AtGRXS17-expressing tomato plants during heat stress when compared to wild-type controls. Under cold, drought, and oxidative stress conditions, AtGRXS17-expressing tomato plants also displayed more vigorous growth and less physiological damage than those of the wild-type control plants. Quantitative real-time PCR (qRT-PCR) analysis indicated that expression of AtGRXS17 alters multiple stress defense signaling pathways, including the Abscisic Acid (ABA) and C-Repeat Binding Factors (CBF) pathways. The results revealed a conserved function for a glutaredoxin protein in abiotic stress adaptation, and manipulation of AtGRXS17 may be a useful approach to improve crop stress tolerance and understand plant signaling under abiotic stress conditions. Deregulated expression of an Arabidopsis H[superscript]+/Ca[superscript]2[superscript]+ antiporter (sCAX1) in agricultural crops increases total calcium (Ca[superscript]2[superscript]+) but may result in yield loses due to calcium-deficiency like symptoms. Here we demonstrate that co-expression of a maize calreticulin (CRT, a Ca[superscript]2[superscript]+ binding protein located at endoplasmic reticulum) in sCAX1-expressing plants mitigated these adverse effects while maintaining enhanced Ca[superscript]2[superscript]+ content. Co-expression of CRT and sCAX1 could alleviate the hypersensitivity to ion imbalance in tobacco plants. Furthermore, blossom-end rot (BER) in tomato may be linked to changes in CAX activity and enhanced CRT expression mitigated BER in sCAX1 expressing lines. These findings suggest that co-expressing Ca[superscript]2[superscript]+ transporters and binding protein at different intracellular compartments can alter the content and distribution of calcium within the plant matrix.
22

Investigating the Role of Alternative Oxidase in Nicotiana tabacum during Light Acclimation

Cheung, Melissa 23 August 2011 (has links)
Photosynthetic electron transport produces ATP and NADPH which support carbon fixation by the Calvin Cycle. To avoid over-reduction of the electron transport chain, plants must balance absorption and consumption of light energy. Mitochondrial alternative oxidase (AOX) is a non-energy-conserving electron sink, making it an ideal candidate to oxidize excess reductant and regulate chloroplastic redox state. Wild-type (WT) and transgenic Nicotiana tabacum lines with enhanced or suppressed AOX protein levels were grown under low light (LL) and moderate light (ML). LL-grown plants were also shifted to ML. AOX transcript and protein levels were enhanced in WT plants under ML. Chlorophyll fluorescence, gas exchange, and contents of chlorophyll, carbohydrate, and malondialdehyde were measured. Lack of AOX protein decreased Photosystem II (PSII) quantum efficiency and CO2 assimilation rates while enhancing PSII excitation pressure compared to WT. These findings suggest a role for AOX in mediating the chloroplast-mitochondrion relationship during acclimation to higher irradiance.
23

Investigating the Role of Alternative Oxidase in Nicotiana tabacum during Light Acclimation

Cheung, Melissa 23 August 2011 (has links)
Photosynthetic electron transport produces ATP and NADPH which support carbon fixation by the Calvin Cycle. To avoid over-reduction of the electron transport chain, plants must balance absorption and consumption of light energy. Mitochondrial alternative oxidase (AOX) is a non-energy-conserving electron sink, making it an ideal candidate to oxidize excess reductant and regulate chloroplastic redox state. Wild-type (WT) and transgenic Nicotiana tabacum lines with enhanced or suppressed AOX protein levels were grown under low light (LL) and moderate light (ML). LL-grown plants were also shifted to ML. AOX transcript and protein levels were enhanced in WT plants under ML. Chlorophyll fluorescence, gas exchange, and contents of chlorophyll, carbohydrate, and malondialdehyde were measured. Lack of AOX protein decreased Photosystem II (PSII) quantum efficiency and CO2 assimilation rates while enhancing PSII excitation pressure compared to WT. These findings suggest a role for AOX in mediating the chloroplast-mitochondrion relationship during acclimation to higher irradiance.
24

Mechanisms Controlling the Distribution of Two Invasive Bromus Species

Bykova, Olga 15 August 2013 (has links)
In order to predict future range shifts for invasive species it is important to explore their ability to acclimate to the new environment and understand physiological and reproductive constraints controlling their distribution. My dissertation studied mechanisms by which temperature may affect the distribution of two of the most aggressive plant invaders in North America, Bromus tectorum and Bromus rubens. While Bromus tectorum is dominant in the “cold desert” steppes of the Intermountain region of western North America, B. rubens is one of the severe grass invaders in the “hot deserts” of southwestern North America. I first evaluated whether winter freezing tolerance is the mechanism responsible for the distinct northern range limits of Bromus species. Bromus rubens has a slower rate of freezing acclimation that leads to intolerance of sudden, late-autumn reductions in temperature below -12°C, Bromus tectorum, by contrast, cold hardens rapidly and is not impacted by the sudden severe late-autumn cold. Photosynthetic response to temperature does not explain their current range separation. Bromus species differ little in their photosynthetic temperature responses and the acclimation pattern of photosynthesis. Both species acclimated to a broad range of temperature through the amelioration of Pi regeneration limitation at sub-optimal temperatures and improved carboxylation capacity above the thermal optimum which probably resulted from increased thermostability of Rubisco activase. The effect of elevated temperatures during flowering on the seed yield of Bromus species demonstrates that neither species produces seed at 36°C and above. These thresholds are close to temperatures encountered during flowering in their natural environment. In summary, climatic changes will cause northward range expansion of Bromus species due to less severe autumn and winter, while reproductive failure could cause range contraction at their southern margins.
25

Interspecific and Size-dependent Variation in Carbon Concentration and Wood Chemical Traits of Tropical Trees

Martin, Adam 17 December 2012 (has links)
Tropical forests play a major role in global carbon (C) dynamics and maintain some of the highest biological complexity on Earth; however, little is known about how variation in wood chemical traits contributes to tropical forest structure and function. This research examines inter- and intraspecific patterns in wood chemical traits in order to understand 1) the role wood chemical traits play in tropical forest C dynamics, and 2) the adaptive significance of wood chemical traits in tropical trees. I found wood C concentration varies widely among co-occurring tropical tree species, with average C concentration (47.4 ± 0.33% w/w (S.E.)) being significantly lower than values assumed in prominent forest C accounting protocols. Failing to account for this variation leads to overestimates of ~3.3 – 5.3% in tropical forest C accounting, an error that compounds significantly at larger spatial scales. I also show that oven drying samples prior to elemental analysis underestimates wood C concentration by 2.5 ± 0.17%, due to the loss of the “volatile C fraction”. Counter to expectations, I found wood C concentration is not ii phylogenetically conserved nor correlated to species demography or life history traits. Wood chemical traits showed consistent size-dependent patterns: wood C (in 16 of 24 species) and lignin (in 15 of 16 species) was higher in saplings vs. conspecific canopy trees. These patterns, complimented by phylogenetic analyses, suggest saplings require wood chemical traits that confer greater pathogen defense. When analyzed across a continuous size spectrum, I found wood C concentration (and leaf structural traits) increases linearly, while wood starch concentration (and leaf traits associated with C gain) shows “hump-shaped” patterns with peak values closely preceding reproductive onset; the latter result suggests C may limit growth in larger trees. Overall, my dissertation provides one of the first comprehensive examinations of wood chemical trait variation in tropical trees. In doing so it provides novel, timely, and critical insights into how wood chemical traits contribute to tropical forest structure and function.
26

Interspecific and Size-dependent Variation in Carbon Concentration and Wood Chemical Traits of Tropical Trees

Martin, Adam 17 December 2012 (has links)
Tropical forests play a major role in global carbon (C) dynamics and maintain some of the highest biological complexity on Earth; however, little is known about how variation in wood chemical traits contributes to tropical forest structure and function. This research examines inter- and intraspecific patterns in wood chemical traits in order to understand 1) the role wood chemical traits play in tropical forest C dynamics, and 2) the adaptive significance of wood chemical traits in tropical trees. I found wood C concentration varies widely among co-occurring tropical tree species, with average C concentration (47.4 ± 0.33% w/w (S.E.)) being significantly lower than values assumed in prominent forest C accounting protocols. Failing to account for this variation leads to overestimates of ~3.3 – 5.3% in tropical forest C accounting, an error that compounds significantly at larger spatial scales. I also show that oven drying samples prior to elemental analysis underestimates wood C concentration by 2.5 ± 0.17%, due to the loss of the “volatile C fraction”. Counter to expectations, I found wood C concentration is not ii phylogenetically conserved nor correlated to species demography or life history traits. Wood chemical traits showed consistent size-dependent patterns: wood C (in 16 of 24 species) and lignin (in 15 of 16 species) was higher in saplings vs. conspecific canopy trees. These patterns, complimented by phylogenetic analyses, suggest saplings require wood chemical traits that confer greater pathogen defense. When analyzed across a continuous size spectrum, I found wood C concentration (and leaf structural traits) increases linearly, while wood starch concentration (and leaf traits associated with C gain) shows “hump-shaped” patterns with peak values closely preceding reproductive onset; the latter result suggests C may limit growth in larger trees. Overall, my dissertation provides one of the first comprehensive examinations of wood chemical trait variation in tropical trees. In doing so it provides novel, timely, and critical insights into how wood chemical traits contribute to tropical forest structure and function.
27

Optimization of Nitrogen Acquisition, and Metabolism, by Potassium in Rice, and Barley

Balkos, Konstantine Dino 16 December 2009 (has links)
We present the first characterization of K+ optimization of N uptake and metabolism in an NH4+-tolerant species, tropical lowland rice (cv. IR-72). 13N radiotracing showed that increased K+ supply reduces futile NH4+ cycling at the plasma membrane, diminishing the excessive rates of both unidirectional influx and efflux. Pharmacological testing showed that low-affinity NH4+ influx may be mediated by both K+ and non-selective cation channels. Suppression of NH4+ influx by K+ occurred within minutes of increasing K+ supply. Increased K+ reduced free [NH4+] in roots and shoots by 50-75%. Plant biomass was maximized on 10 mM NH4+ and 5 mM K+, with growth 160% higher than 10 mM NO3--grown plants, and 220% higher than plants grown at 10 mM NH4+ and 0.1 mM K+. Unlike in NH4+-sensitive barley, growth optimization was not attributed to a reduced energy cost of futile NH4+ cycling at the plasma membrane. Activities of the key enzymes glutamine synthetase (GS) and phosphoenolpyruvate carboxylase (PEPC) were strongly stimulated by elevated K+, mirroring plant growth and protein content. Improved plant performance through optimization of K+ and NH4+ is likely to be of substantial agronomic significance in the world’s foremost crop species.
28

The Impact of Engineering Halide/Thiol Methyltransferase-mediated Cl– volatilization on Salt Tolerance of Tomato Plants

Ritika, Ritika 17 July 2013 (has links)
Many higher plants can synthesize methyl chloride gas via a common metabolic route, also known as the biological chloride methylation. The reaction is catalyzed by an S-adenosyl-L- methionine (AdoMet) dependent halide/thiol methyltransferase (H/TMT). It is speculated that plants use chloride methylation to remove excess chloride via volatilization and hence maintain homeostatic levels of cytoplasmic chloride ion, suggesting a role of H/TMT in salt tolerance. In this project, the effect of engineering a Brassica oleracea thiol methyltransferase (BoTMT) into tomato was studied to determine the physiological relevance of this enzyme in conferring salt tolerance. Transgenic tomato plants acquired the ability to release methyl chloride in response to NaCl treatment, but exhibited no greater tolerance to NaCl, based on several morphological and physiological measurements, as compared to the wild-type plants. The results indicate that AdoMet dependent chloride methylation is unlikely to contribute to an increase in salt tolerance in higher plants.
29

Optimization of Nitrogen Acquisition, and Metabolism, by Potassium in Rice, and Barley

Balkos, Konstantine Dino 16 December 2009 (has links)
We present the first characterization of K+ optimization of N uptake and metabolism in an NH4+-tolerant species, tropical lowland rice (cv. IR-72). 13N radiotracing showed that increased K+ supply reduces futile NH4+ cycling at the plasma membrane, diminishing the excessive rates of both unidirectional influx and efflux. Pharmacological testing showed that low-affinity NH4+ influx may be mediated by both K+ and non-selective cation channels. Suppression of NH4+ influx by K+ occurred within minutes of increasing K+ supply. Increased K+ reduced free [NH4+] in roots and shoots by 50-75%. Plant biomass was maximized on 10 mM NH4+ and 5 mM K+, with growth 160% higher than 10 mM NO3--grown plants, and 220% higher than plants grown at 10 mM NH4+ and 0.1 mM K+. Unlike in NH4+-sensitive barley, growth optimization was not attributed to a reduced energy cost of futile NH4+ cycling at the plasma membrane. Activities of the key enzymes glutamine synthetase (GS) and phosphoenolpyruvate carboxylase (PEPC) were strongly stimulated by elevated K+, mirroring plant growth and protein content. Improved plant performance through optimization of K+ and NH4+ is likely to be of substantial agronomic significance in the world’s foremost crop species.
30

The Impact of Engineering Halide/Thiol Methyltransferase-mediated Cl– volatilization on Salt Tolerance of Tomato Plants

Ritika, Ritika 17 July 2013 (has links)
Many higher plants can synthesize methyl chloride gas via a common metabolic route, also known as the biological chloride methylation. The reaction is catalyzed by an S-adenosyl-L- methionine (AdoMet) dependent halide/thiol methyltransferase (H/TMT). It is speculated that plants use chloride methylation to remove excess chloride via volatilization and hence maintain homeostatic levels of cytoplasmic chloride ion, suggesting a role of H/TMT in salt tolerance. In this project, the effect of engineering a Brassica oleracea thiol methyltransferase (BoTMT) into tomato was studied to determine the physiological relevance of this enzyme in conferring salt tolerance. Transgenic tomato plants acquired the ability to release methyl chloride in response to NaCl treatment, but exhibited no greater tolerance to NaCl, based on several morphological and physiological measurements, as compared to the wild-type plants. The results indicate that AdoMet dependent chloride methylation is unlikely to contribute to an increase in salt tolerance in higher plants.

Page generated in 0.0136 seconds