• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 17
  • 13
  • 7
  • 2
  • Tagged with
  • 83
  • 59
  • 51
  • 45
  • 24
  • 17
  • 16
  • 15
  • 15
  • 15
  • 15
  • 13
  • 12
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Investigation of Structure-function and Signal Transduction of Plant Cyclic Nucleotide-gated Ion Channels

Chin, Kimberley 07 January 2014 (has links)
Cyclic nucleotide-gated channels (CNGCs) are non-selective cation channels that were first identified in vertebrate photosensory and olfactory neurons. Although the physiological roles and biophysical properties of animal CNGCs have been well studied, much less is known about these channels in plants. The Arabidopsis genome encodes twenty putative CNGC subunits that are postulated to form channel complexes that mediate various physiological processes involving abiotic and biotic stress responses, ion homeostasis and development. The identification of Arabidopsis autoimmune CNGC mutants, such as defense no death class (dnd1 and dnd2), and the constitutive expressor of pathogenesis related genes 22 (cpr22) implicate AtCNGC2, 4, 11 and 12 in plant immunity. Here, I present a comprehensive study of the molecular mechanisms involved in CNGC-mediated signaling pathways with emphasis on pathogen defense. Previously, a forward genetics approach aimed to identify suppressor mutants of the rare gain-of-function autoimmune mutant, cpr22, identified key residues that are important for CNGC subunit interactions and channel function. First, I present a structure-function analysis of one of these suppressor mutants (S58) that revealed a key residue in the cyclic nucleotide binding domain involved in the stable regulation of CNGCs. Second, I present a new suppressor screen using AtCNGC2 T-DNA knockout mutants that specifically aimed to identify novel downstream components of CNGC-mediated pathogen defense signaling. In this screen, I successfully isolated and characterized the novel Arabidopsis mutant, repressor of defense no death 1 (rdd1), and expanded this study to demonstrate its involvement in AtCNGC2 and AtCNGC4-mediated signal transduction. Additionally, I demonstrated for the first time, the physical interaction of AtCNGC2 and AtCNGC4 subunits in planta. The findings presented in this thesis broaden our current knowledge of CNGCs in plants, and provide a new foundation for future elucidation of the structure-function relationships and signal transduction mediated by these channels.
82

Investigation of Structure-function and Signal Transduction of Plant Cyclic Nucleotide-gated Ion Channels

Chin, Kimberley 07 January 2014 (has links)
Cyclic nucleotide-gated channels (CNGCs) are non-selective cation channels that were first identified in vertebrate photosensory and olfactory neurons. Although the physiological roles and biophysical properties of animal CNGCs have been well studied, much less is known about these channels in plants. The Arabidopsis genome encodes twenty putative CNGC subunits that are postulated to form channel complexes that mediate various physiological processes involving abiotic and biotic stress responses, ion homeostasis and development. The identification of Arabidopsis autoimmune CNGC mutants, such as defense no death class (dnd1 and dnd2), and the constitutive expressor of pathogenesis related genes 22 (cpr22) implicate AtCNGC2, 4, 11 and 12 in plant immunity. Here, I present a comprehensive study of the molecular mechanisms involved in CNGC-mediated signaling pathways with emphasis on pathogen defense. Previously, a forward genetics approach aimed to identify suppressor mutants of the rare gain-of-function autoimmune mutant, cpr22, identified key residues that are important for CNGC subunit interactions and channel function. First, I present a structure-function analysis of one of these suppressor mutants (S58) that revealed a key residue in the cyclic nucleotide binding domain involved in the stable regulation of CNGCs. Second, I present a new suppressor screen using AtCNGC2 T-DNA knockout mutants that specifically aimed to identify novel downstream components of CNGC-mediated pathogen defense signaling. In this screen, I successfully isolated and characterized the novel Arabidopsis mutant, repressor of defense no death 1 (rdd1), and expanded this study to demonstrate its involvement in AtCNGC2 and AtCNGC4-mediated signal transduction. Additionally, I demonstrated for the first time, the physical interaction of AtCNGC2 and AtCNGC4 subunits in planta. The findings presented in this thesis broaden our current knowledge of CNGCs in plants, and provide a new foundation for future elucidation of the structure-function relationships and signal transduction mediated by these channels.
83

Écophysiologie de l'épinette noire des pessières à mousses et à lichens nordiques

Dally-Bélanger, Catherine 12 1900 (has links)
Les changements climatiques sont susceptibles d’affecter la croissance, le développement et la régénération des pessières noires de la forêt boréale. Les échecs de régénération dans les pessières à mousses (PM) de l’ouest du Québec causent des trouées dans la mosaïque forestière dense et augmentent la proportion de pessières à lichens (PL) dans le paysage. Les objectifs de l’étude sont de déterminer si les caractéristiques contrastantes des PM et des PL engendrent différents taux de photosynthèse maximale (Amax) chez les épinettes noires sur un gradient latitudinal ou saisonnier. Ensuite, l’étude tentera de déterminer si le Amax des individus reflète leurs capacités physiologiques par leur taux de carboxylation maximal (Vcmax) et de transport des électrons maximal (Jmax) extraits de courbes de réponse au CO2. Les taux de Vcmax et Jmax sont différents entre les PM et les PL car l’acquisition de ces nutriments semble différente. La latitude influence les valeurs de Vcmax et Jmax, mais l’effet serait causé par les caractéristiques floristiques et la composition du sol des placettes plutôt que par la latitude. Les capacités physiologiques ne se reflètent pas dans les valeurs de Amax, autant pour le type de peuplement que la latitude, car Amax serait limité par la concentration en CO2 qui ne permet pas la saturation de l’enzyme rubisco. Malgré l’absence de différence entre le Amax des PM et des PL, l’augmentation de la concentration en CO2 et de la température risque de créer un écart de Amax entre les types de peuplement, considérant leurs capacités physiologiques différentes. / Climate change is likely to affect the growth, development and regeneration of black spruce stands across the boreal forest. Regeneration failures cause gaps in the dense black spruce-feathermoss (BSFM) mosaic increasing the landscape proportion of open lichen-woodland (LW). The aims of the study are to determine whether the contrasting characteristics of BSFM and LW induce different light-saturated maximum photosynthesis (Amax) in black spruce trees across a latitudinal or seasonal gradient. Then the study will attempt to determine if Amax is likely to reflect their physiological capacities based on their maximum carboxylation rate (Vcmax) and maximum electron transport rate (Jmax) derived from CO2 response curves. Vcmax and Jmax are different between BSFM and LW mainly because nutrient acquisition seems different between stand types. Latitude affects values of Vcmax and Jmax, but the effect could be explained by soil and vegetation composition between experimental plots rather than by latitude. Physiological capacities do not match Amax values for stand type and latitude because Amax would be limited by CO2 concentration which does not allow saturation of rubisco. Despite the lack of difference between the Amax of BSFM and LW stands, future increase in CO2 concentration and temperature could induce a gap between their respective photosynthesis rates because of their different physiological capacities.

Page generated in 0.0149 seconds