• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Impulse Noise and Hazard Analysis of Impulse Noise Induced Hearing Loss using AHAAH Modeling

Wu, Qing 01 August 2014 (has links)
Millions of people across the world are suffering from noise induced hearing loss (NIHL), especially under working conditions of either continuous Gaussian or non-Gaussian noise that might affect human's hearing function. Impulse noise is a typical non-Gaussian noise exposure in military and industry, and generates severe hearing loss problem. This study mainly focuses on characterization of impulse noise using digital signal analysis method and prediction of the auditory hazard of impulse noise induced hearing loss by the Auditory Hazard Assessment Algorithm for Humans (AHAAH) modeling. A digital noise exposure system has been developed to produce impulse noises with peak sound pressure level (SPL) up to 160 dB. The characterization of impulse noise generated by the system has been investigated and analyzed in both time and frequency domains. Furthermore, the effects of key parameters of impulse noise on auditory risk unit (ARU) are investigated using both simulated and experimental measured impulse noise signals in the AHAAH model. The results showed that the ARUs increased monotonically with the peak pressure (both P+ and P-) increasing. With increasing of the time duration, the ARUs increased first and then decreased, and the peak of ARUs appeared at about t = 0.2 ms (for both t+ and t-). In addition, the auditory hazard of experimental measured impulse noises signals demonstrated a monotonically increasing relationship between ARUs and system voltages.

Page generated in 0.0496 seconds