• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 8
  • 4
  • 1
  • 1
  • Tagged with
  • 42
  • 42
  • 42
  • 13
  • 11
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution of noise to the variance of integrating detectors

Meyer, Thomas Johan 19 April 2010
X-ray medical imaging provides invaluable medical information, while subjecting patients to hazardous ionizing radiation. The dosage that the patient is exposed to may be reduced, at the cost of image resolution. A technology that promises lower dosage for a given resolution is direct conversion digital imaging, typically based on amorphous Selenium semiconductor. Sufficient exposure should be used for the first exposure to avoid subsequent exposures; a challenge is then to reduce the necessary exposure for a suitable image. To quantify how little radiation the detector can reliably discriminate, one needs an analysis of the variance that 1/f and white noise contribute to the signal of such detectors. An important consideration is that the dark current, which varies with time, is subtracted from the photo-current, to reduce the spurious spatial variance in the image. In this thesis, the variance that 1/f noise contributes to integrating detectors is analysed, for a very general integrating detector. Experiments were performed to verify the theoretical results obtained for the 1/f noise variance contribution.
2

Modeling 1/f noise in a-Si:H field-effect transistors

Xu, Yang 17 October 2008
Hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs) are used as switching elements in large area active matrix liquid crystal displays and various image sensing devices for radiation detection. The noise inherent in the a-Si:H TFTs contributes to the overall noise figure of such devices and degrades the signal to noise ratio; therefore, the noise is an important factor in the design of the devices. The noise of the a-Si:H TFTs has been studied experimentally, but the origin of the noise is not understood. <p> This work calculates the noise of the a-Si:H TFTs based on a simulation of operation of the TFTs and the hypothesis that the device noise is due to the intrinsic noise of the a-Si:H material. An a-Si:H TFT with an inverted-staggered structure has been simulated by numerically solving the fundamental transport equations for various gate and drain-source voltages. The drain-source curves derived from the simulation agree qualitatively with the experimental results: both the linear and saturated regions are observed. The low frequency noise was calculated based on the charge density distribution in the channel obtained from the simulation and the known dependence of the noise in the a-Si:H on the charge density, Hooges relation. The calculated noise power increases with the drain-source voltage and is inversely proportional to the gate voltage or the effective channel length. The curves agree qualitatively with the experimental results. The calculated noise power agrees quantitatively with the experiments when the scaling parameter in Hooges relation, , is set to . This value agrees with the experimentally determined value for a-Si:H. The results are consistent with the hypothesis that the low frequency noise in the a-Si:H TFTs is due to the material itself.
3

Modeling 1/f noise in a-Si:H field-effect transistors

Xu, Yang 17 October 2008 (has links)
Hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs) are used as switching elements in large area active matrix liquid crystal displays and various image sensing devices for radiation detection. The noise inherent in the a-Si:H TFTs contributes to the overall noise figure of such devices and degrades the signal to noise ratio; therefore, the noise is an important factor in the design of the devices. The noise of the a-Si:H TFTs has been studied experimentally, but the origin of the noise is not understood. <p> This work calculates the noise of the a-Si:H TFTs based on a simulation of operation of the TFTs and the hypothesis that the device noise is due to the intrinsic noise of the a-Si:H material. An a-Si:H TFT with an inverted-staggered structure has been simulated by numerically solving the fundamental transport equations for various gate and drain-source voltages. The drain-source curves derived from the simulation agree qualitatively with the experimental results: both the linear and saturated regions are observed. The low frequency noise was calculated based on the charge density distribution in the channel obtained from the simulation and the known dependence of the noise in the a-Si:H on the charge density, Hooges relation. The calculated noise power increases with the drain-source voltage and is inversely proportional to the gate voltage or the effective channel length. The curves agree qualitatively with the experimental results. The calculated noise power agrees quantitatively with the experiments when the scaling parameter in Hooges relation, , is set to . This value agrees with the experimentally determined value for a-Si:H. The results are consistent with the hypothesis that the low frequency noise in the a-Si:H TFTs is due to the material itself.
4

Contribution of noise to the variance of integrating detectors

Meyer, Thomas Johan 19 April 2010 (has links)
X-ray medical imaging provides invaluable medical information, while subjecting patients to hazardous ionizing radiation. The dosage that the patient is exposed to may be reduced, at the cost of image resolution. A technology that promises lower dosage for a given resolution is direct conversion digital imaging, typically based on amorphous Selenium semiconductor. Sufficient exposure should be used for the first exposure to avoid subsequent exposures; a challenge is then to reduce the necessary exposure for a suitable image. To quantify how little radiation the detector can reliably discriminate, one needs an analysis of the variance that 1/f and white noise contribute to the signal of such detectors. An important consideration is that the dark current, which varies with time, is subtracted from the photo-current, to reduce the spurious spatial variance in the image. In this thesis, the variance that 1/f noise contributes to integrating detectors is analysed, for a very general integrating detector. Experiments were performed to verify the theoretical results obtained for the 1/f noise variance contribution.
5

Detekce dynamických Gaborových vlnek v 1/f šumu / Detection of dynamic Gabor patches in 1/f noise

Šerý, Martin January 2021 (has links)
Research focusing on static scenes with static objects is omitting the time factor from real life examples we are trying to study. Can we say that a lifeguard looking for a drowning man is using the same brain processes that were observed in the laboratory for static scenes? We can conclude that a static scene is a big simplification of the task itself. The aim of this thesis is to prepare a tool which would allow researching dynamic scenes and thus broadening the possibilities of visual detection tasks at hand. Along the tool we also present a couple of simplified examples with which we would like to demonstrate the utilization of the tool. All concluding with a final experiment in which we will try to detect masked patterns in a noisy environment. 1
6

The applications of fractal geometry and self - similarity to art music

Steynberg, Ilse January 2014 (has links)
The aim of this research study is to investigate different practical ways in which fractal geometry and self-similarity can be applied to art music, with reference to music composition and analysis. This specific topic was chosen because there are many misconceptions in the field of fractal and self-similar music. Analyses of previous research as well as the music analysis of several compositions from different composers in different genres were the main methods for conducting the research. Although the dissertation restates much of the existing research on the topic, it is (to the researcher‟s knowledge) one of the first academic works that summarises the many different facets of fractal geometry and music. Fractal and self-similar shapes are evident in nature and art dating back to the 16th century, despite the fact that the mathematics behind fractals was only defined in 1975 by the French mathematician, Benoit B. Mandelbrot. Mathematics has been a source of inspiration to composers and musicologists for many centuries and fractal geometry has also infiltrated the works of composers in the past 30 years. The search for fractal and self-similar structures in music composed prior to 1975 may lead to a different perspective on the way in which music is analysed. Basic concepts and prerequisites of fractals were deliberately simplified in this research in order to collect useful information that musicians can use in composition and analysis. These include subjects such as self-similarity, fractal dimensionality and scaling. Fractal shapes with their defining properties were also illustrated because their structures have been likened to those in some music compositions. This research may enable musicians to incorporate mathematical properties of fractal geometry and self-similarity into original compositions. It may also provide new ways to view the use of motifs and themes in the structural analysis of music. / Dissertation (MMus)--University of Pretoria, 2014. / lk2014 / Music / MMus / Unrestricted
7

Tunnelling and noise in GaAs and graphene nanostructures

Mayorov, Alexander January 2008 (has links)
Experimental studies presented in this thesis have shown the first realisation of resonant tunnelling transport through two impurities in a vertical double-barrier tunnelling diode; have proved the chiral nature of charge carriers in graphene by studying ballistic transport through graphene $p$-$n$ junctions; have demonstrated significant differences of $1/f$ noise in graphene compared with conventional two-dimensional systems. Magnetic field parallel to the current has been used to investigate resonant tunnelling through a double impurity in a vertical double-barrier resonant tunnelling diode, by measuring the current-voltage and differential conductance-voltage characteristics of the structure. It is shown that such experiments allow one to obtain the energy levels, the effective electron mass and spatial positions of the impurities. The chiral nature of the carriers in graphene has been demonstrated by comparing measurements of the conductance of a graphene $p$-$n$-$p$ structure with the predictions of diffusive models. This allowed us to find, unambiguously, the contribution of ballistic resistance of graphene $p$-$n$ junctions to the total resistance of the $p$-$n$-$p$ structure. In order to do this, the band profile of the $p$-$n$-$p$ structure has been calculated using the realistic density of states in graphene. It has been shown that the developed models of diffusive transport can be applied to explain the main features of the magnetoresistance of $p$-$n$-$p$ structures. It was shown that $1/f$ noise in graphene has much more complicated concentration and temperature dependences near the Dirac point than in usual metallic systems, possibly due to the existence of the electron-hole puddles in the electro-neutrality region. In the regions of high carrier concentration where no inhomogeneity is expected, the noise has an inverse square root dependence on the concentration, which is also in contradiction with the Hooge relation.
8

Jitter in Oscillators with 1/f Noise Sources and Application to True RNG for Cryptography

Liu, Chengxin 10 January 2006 (has links)
In the design of voltage-controlled oscillators (VCOs) for communication systems, timing jitter is of major concern since it is the largest contributor to the bit-error rate. The latest deep submicron processes provide the possibility of higher oscillator speed at the cost of increased device noise and a higher 1/f noise corner. Therefore it is crucial to characterize the upconverted 1/f noise for practical applications. This dissertation presents a simple model to relate the time domain jitter and frequency domain phase noise in the presence of non-negligible 1/f noise sources. It will simplify the design, simulation, and testing of the PLL, since with this technique only the open loop VCO needs to be considered. Design methodologies for white noise dominated ring oscillators and PLLs are also developed by analyzing the upconverted thermal noise in time domain using a LTI model. The trade-off and relationship between jitter, speed, power dissipation and VCO geometry are evaluated for different applications. This model is supported by the measured data from 24 ring oscillators with different geometry fabricated in TSMC 0.18um process. The theory developed in this dissertation is applied to the design of PLL- and DLL- based true random number generators (TRNG) for application in the area of“smart cards". New architectures of dual-oscillator sampling and delay-line sampling are proposed for random number generation, which has the advantage of lower power dissipation and lower cost over traditional approaches. Both structures are implemented in test chips fabricated in AMI 1.5um process. The PLL-based TRNG passed the NIST SP800-22 statistical test suite and the DLL-based TRNG passed both the NIST SP800-22 statistical test suite and the Diehard battery of tests.
9

Autocorrelation analysis in frequency domain as a tool for MOSFET low frequency noise characterization / Analise de autocorrelação no dominio frequencia como ferramenta para a caracterização do ruido de baixa frequencia em MOSFET

Both, Thiago Hanna January 2017 (has links)
O ruído de baixa frequência é um limitador de desempenho em circuitos analógicos, digitais e de radiofrequência, introduzindo ruído de fase em osciladores e reduzindo a estabilidade de células SRAM, por exemplo. Transistores de efeito de campo de metalóxido- semicondutor (MOSFETs) são conhecidos pelos elevados níveis de ruído 1= f e telegráfico, cuja potência pode ser ordens de magnitude maior do que a observada para ruído térmico para frequências de até dezenas de kHz. Além disso, com o avanço da tecnologia, a frequência de corner —isto é, a frequência na qual as contribuições dos ruídos térmico e shot superam a contribuição do ruído 1= f — aumenta, tornando os ruídos 1= f e telegráfico os mecanismos dominantes de ruído na tecnologia CMOS para frequências de até centenas de MHz. Mais ainda, o ruído de baixa frequência em transistores nanométricos pode variar significativamente de dispositivo para dispositivo, o que torna a variabilidade de ruído um aspecto importante para tecnologias MOS modernas. Para assegurar o projeto adequado de circuitos do ponto de vista de ruído, é necessário, portanto, identificar os mecanismos fundamentais responsáveis pelo ruído de baixa frequência em MOSFETs e desenvolver modelos capazes de considerar as dependências do ruído com geometria, polarização e temperatura. Neste trabalho é proposta uma técnica para análise de ruído de baixa frequência baseada na autocorrelação dos espectros de ruído em função de parâmetros como frequência, polarização e temperatura. A metodologia apresentada revela informações importantes sobre os mecanismos responsáveis pelo ruído 1= f que são difíceis de obter de outras formas. As análises de correlação realizadas em três tecnologias CMOS comerciais (140 nm, 65 nm e 45 nm) fornecem evidências contundentes de que o ruído de baixa frequência em transistores MOS tipo-n e tipo-p é composto por um somatório de sinais telegráficos termicamente ativados. / Low-frequency noise (LFN) is a performance limiter for analog, digital and RF circuits, introducing phase noise in oscillators and reducing the stability of SRAM cells, for example. Metal-oxide-semiconductor field-effect-transistors (MOSFETs) are known for their particularly high 1= f and random telegraph noise levels, whose power may be orders of magnitude larger than thermal noise for frequencies up to dozens of kHz. With the technology scaling, the corner frequency — i.e. the frequency at which the contributions of thermal and shot noises to noise power overshadow that of the 1= f noise — is increased, making 1= f and random telegraph signal (RTS) the dominant noise mechanism in CMOS technologies for frequencies up to several MHz. Additionally, the LFN levels from device-to-device can vary several orders of magnitude in deeply-scaled devices, making LFN variability a major concern in advanced MOS technologies. Therefore, to assure proper circuit design in this scenario, it is necessary to identify the fundamental mechanisms responsible for MOSFET LFN, in order to provide accurate LFN models that account not only for the average noise power, but also for its variability and dependences on geometry, bias and temperature. In this work, a new variability-based LFN analysis technique is introduced, employing the autocorrelation of multiple LFN spectra in terms of parameters such as frequency, bias and temperature. This technique reveals information about the mechanisms responsible for the 1= f noise that is difficult to obtain otherwise. The correlation analyses performed on three different commercial mixed-signal CMOS technologies (140-nm, 65-nm and 40-nm) provide strong evidence that the LFN of both n- and p-type MOS transistors is primarily composed of the superposition of thermally activated random telegraph signals (RTS).
10

A Study of Anomalous Conduction in n-Type Amorphous Silicon and Correlations in Conductivity and Noise in Gold Nanoparticle-Ligand Arrays

Western, Brianna J 08 1900 (has links)
This work explores two very different structural systems: n-type hydrogenated amorphous silicon (a-Si:H) and gold nanoparticles (AuNPs) suspended in a matrix of organic ligands. For a-Si:H, examination of the gas-phase concentration of dopant (1-6% PH3/SiH4) and argon diluent effects includes the temperature dependent conductivity, low-frequency electronic noise, and Raman spectroscopy to examine structure. It is found that a-Si:H samples grown with high dopant concentration or with argon dilution exhibit an anomalous hopping conduction mechanism with an exponent of p=0.75. An experimental approach is used to determine correlations between conduction parameters, such as the pre-exponential factor and the characteristic temperature, rather than an analysis of existing models to explain the anomalous conduction. From these results, the anomalous conduction is a result of a change in the shape of the density of states and not a shift of the Fermi level with dopant. Additionally, it is found that argon dilution increases the carrier mobility, reduces the doping efficiency, and causes a degradation of the short-range order. With AuNPs, a comparison of temperature dependent conductivity and low-frequency noise shows that the temperature coefficient of resistance (TCR) is independent of the length of interparticle distance while the noise magnitude decreases.

Page generated in 0.0467 seconds