• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

1-D simulation of turbocharged SI engines : focusing on a new gas exchange system and knock prediction

Elmqvist-Möller, Christel January 2006 (has links)
<p>This licentiate thesis concerns one dimensional flow simulation of turbocharged spark ignited engines. The objective has been to contribute to the improvement of turbocharged SI engines’ performance as well as 1 D simulation capabilities.</p><p>Turbocharged engines suffer from poor gas exchange due to the high exhaust pressure created by the turbine. This results in power loss as well as high levels of residual gas, which makes the engine more prone to knock.</p><p>This thesis presents an alternative gas exchange concept, with the aim of removing the high exhaust pressure during the critical periods. This is done by splitting the two exhaust ports into two separate exhaust manifolds.</p><p>The alternative gas exchange study was performed by measurements as well as 1-D simulations. The link between measurements and simulations is very strong, and will be discussed in this thesis.</p><p>As mentioned, turbocharged engines are prone to knock. Hence, finding a method to model knock in 1-D engine simulations would improve the simulation capabilities. In this thesis a 0-D knock model, coupled to the 1-D engine model, is presented</p>
2

1-D simulation of turbocharged SI engines : focusing on a new gas exchange system and knock prediction

Elmqvist-Möller, Christel January 2006 (has links)
This licentiate thesis concerns one dimensional flow simulation of turbocharged spark ignited engines. The objective has been to contribute to the improvement of turbocharged SI engines’ performance as well as 1 D simulation capabilities. Turbocharged engines suffer from poor gas exchange due to the high exhaust pressure created by the turbine. This results in power loss as well as high levels of residual gas, which makes the engine more prone to knock. This thesis presents an alternative gas exchange concept, with the aim of removing the high exhaust pressure during the critical periods. This is done by splitting the two exhaust ports into two separate exhaust manifolds. The alternative gas exchange study was performed by measurements as well as 1-D simulations. The link between measurements and simulations is very strong, and will be discussed in this thesis. As mentioned, turbocharged engines are prone to knock. Hence, finding a method to model knock in 1-D engine simulations would improve the simulation capabilities. In this thesis a 0-D knock model, coupled to the 1-D engine model, is presented / QC 20101112

Page generated in 0.1097 seconds