Spelling suggestions: "subject:"11hydroxysteroid dehydrogenase"" "subject:"113phydroxysteroid dehydrogenase""
1 |
Investigation of Drug Metabolism by Non-Cytochrome P450 Enzymes and Its Clinical Relevance / 非シトクロム P450 酵素による薬物代謝反応とその臨床的意義に関する研究Nishihara, Mitsuhiro 23 May 2014 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(農学) / 乙第12834号 / 論農博第2798号 / 新制||農||1026(附属図書館) / 学位論文||H26||N4857(農学部図書室) / 31372 / (主査)教授 栗原 達夫, 教授 植田 和光, 教授 平竹 潤 / 学位規則第4条第2項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
2 |
Estrogen and Glucocorticoid MetabolismAndersson, Therése January 2010 (has links)
Background: Cardiovascular disease (CVD) is the leading cause of death among women in Sweden. The risk of CVD increases rapidly after the menopause. A major contributing factor may be the redistribution of adipose tissue, from the peripheral to central depots, associated with menopause. This change in body composition is commonly attributed to declining estrogen levels but may also be affected by tissue-specific alterations in exposure to other steroid hormones, notably glucocorticoids – mainly cortisol in humans. Indeed, adipose tissue-specific overexpression of the glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) induces central obesity, insulin resistance and hypertension in mice. Interestingly, estrogen may regulate this enzyme. The aim of this thesis was to investigate putative links between estrogen and glucocorticoid activation by 11βHSD1. Materials and Methods: 11βHSD1 expression and/or activity in adipose tissue and liver, and adipose estrogen receptor α and β (ERα and ERβ) gene expression, were investigated in lean pre- and postmenopausal women and ovariectomized rodents with and without estrogen supplementation. In lean women measures of 11βHSD1 were correlated to risk markers for CVD. The association between adipose 11βHSD1 and ER mRNA expression was investigated in both lean women and rats and in an additional cohort of obese premenopausal women. In vitro experiments with adipocyte cell lines were used to explore possible pathways for estrogen regulation of 11βHSD1. Results: Subcutaneous adipose tissue transcript levels and hepatic activity of 11βHSD1 were higher in postmenopausal vs. premenopausal women. In rodents, estrogen treatment to ovariectomized rats decreased visceral adipose tissue 11βHSD1, resulting in a shift towards higher subcutaneous (vs. visceral) 11βHSD1 mRNA expression/activity. Increased adipose and hepatic 11βHSD1 were associated with increased blood pressure and a disadvantageous blood lipid profile in humans. We found significant positive associations between 11βHSD1 and ERβ transcript levels in adipose tissue. The in vitro experiments showed upregulation of 11βHSD1 mRNA expression and activity with estrogen or ERβ-agonist treatment at low (corresponding to physiological) concentrations. Conclusions: Our studies show for the first time increased local tissue glucocorticoid activation with menopause/age in women. This may contribute to an increased risk of CVD. Estrogen treatment in rodents induces a shift in 11βHSD1 activity towards the subcutaneous adipose tissue depots, which may direct fat accumulation to this metabolically “safer” depot. The in vitro studies suggest that low-dose estrogen treatment upregulates 11βHSD1 via ERβ. In summary, estrogen - glucocorticoid metabolism interactions may be key in the development of menopause-related metabolic dysfunction and in part mediate the beneficial effects of postmenopausal estrogen treatment on body fat distribution.
|
3 |
Adipose tissue as an active organ : blood flow regulation and tissue-specific glucocorticoid metabolismAndersson, Jonas January 2011 (has links)
Background: Despite advances in the treatment of atherosclerosis, cardiovascular disease is the leading cause of death worldwide. With the population getting older and more obese, the burden of cardiovascular disease may further increase. Premenopausal women are relatively protected against cardiovascular disease compared to men, but the reasons for this sex difference are partly unknown. Redistribution of body fat from peripheral to central depots may be a contributing factor. Central fat is associated with hyperlipidemia, hyperglycemia, hypertension, and insulin resistance. Two possible mediators of these metabolic disturbances are tissue-specific production of the stress hormone cortisol and adipose tissue blood flow (ATBF). The aim of this thesis was to determine the adipose tissue production of cortisol by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and to investigate the regulation of ATBF. Materials and Methods: Cortisol release was estimated by labeled cortisol infusions and tissue-specific catheterizations of subcutaneous and visceral adipose tissue (VAT) in men. We investigated ATBF by 133Xe-washout and its relation to autonomic activity, endothelial function, adipose tissue distribution, and adipokines in different groups of women. We further investigated the effect of two diets and of weight loss on ATBF in women. Results: We demonstrated significant cortisol release from subcutaneous adipose tissue in humans. Splanchnic cortisol release was accounted for entirely by the liver. Cortisol release from VAT (to the portal vein) was not detected. ATBF decreased according to increasing weight and postmenopausal status, and the level of blood flow was associated with nitric oxide (NO) activity and autonomic activity. ATBF was also highly associated with leptin levels and both subcutaneous adipose tissue and VAT areas. After 6 months of diet and weight reduction, a significant difference in ATBF was observed between diet groups. Conclusions: Our data for the first time demonstrate the contributions of cortisol generated from subcutaneous adipose tissue, visceral tissues, and liver by 11β-HSD1. ATBF is linked to autonomic activity, NO activity, and the amount of adipose tissue (independent of fat depot). Postmenopausal overweight women exhibited a loss of ATBF flexibility, which may contribute to the metabolic dysfunction seen in this group. Weight loss in a diet program could not increase the ATBF, although there were ATBF differences between diet groups. The results will increase understanding of adipose tissue biology and contribute to the development of treatment strategies targeting obesity and obesity-related disorders.
|
4 |
Vliv stresu na expresi 11β-hydroxysteroiddehydrogenasy v mozku laboratorního potkana / Effect of stress on expression of 11β-hydroxysteroid dehydrogenase in rat brainKuželová, Andrea January 2013 (has links)
This thesis examines the influence of stress on the activity of hippocampal CA1 area. The main task was to determine whether the stress load affects the changes of the local metabolism of glucocorticoids, and whether the levels of corticosteroid receptors in the CA1 hippocampus are modulated in response to stress. In order to answer these questions, the experiments were carried out using three different rat strains - Fisher, Lewis and Wistar which differ in their activities of hypothalamic-pituitary-adrenal axis. Our results demonstrate that stress has no effect on expression of MR mRNA. Conversely, stress reduces the levels of GR mRNA in CA1 area of the dorsal hippocampus. Moreover, we confirmed that the Lewis and Wistar rats didn't change metabolism of glucocorticoids after stress response. By the Fisher rats increased levels of 11β-HSD1 mRNA expression and therefore increased the metabolism of corticosterone.
|
5 |
Vztah metabolismu kortikosteroidů a ontogeneze ke stresové odpovědi / Relationship between corticosteroid metabolism, ontogenesis and stress responseMakal, Jakub January 2013 (has links)
Stress is a widespread phenomenon in the western society of these days. It is a risky factor for health and well-being of the majority of people. Based on these facts, it is the main subject for the field of "stress physiology" research, which aims to study processes occurring during stress response and tries to elucidate mechanisms leading to stress-induced health impairment. The first aim of this thesis was to describe effects of psycho-social stress on organism. The second aim was to find out if can stress applied in juvenile age affect the stress response in adulthood. If so, how is the role of glucocorticoid-metabolism enzyme 11β-HSD1 in this influence? To answer these questions, two different animal models inducing stress response in the laboratory rat were used. The first one is the model of mild social stress based on the resident-intruder paradigm. Our results show efficancy of this model. Fisher 344 male rats treated under this model for seven consecutive days show highly elevated plasma corticosterone concentrations and elevated expression of the glucocorticoid receptor gene in the pituitary. Behavioral analysis demonstrates a decreased social behavioral profile of the intruders, suggesting submisive social position of these animals in the resident-intruder paradigm. The second model used is...
|
Page generated in 0.0648 seconds