• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Graph Cohomology

Lin, Matthew 01 January 2016 (has links)
What is the cohomology of a graph? Cohomology is a topological invariant and encodes such information as genus and euler characteristic. Graphs are combinatorial objects which may not a priori admit a natural and isomorphism invariant cohomology ring. In this project, given any finite graph G, we constructively define a cohomology ring H*(G) of G. Our method uses graph associahedra and toric varieties. Given a graph, there is a canonically associated convex polytope, called the graph associahedron, constructed from G. In turn, a convex polytope uniquely determines a toric variety. We synthesize these results, and describe the cohomology of the associated variety directly in terms of the graph G itself.
2

Gromov-Witten Theory of Blowups of Toric Threefolds

Ranganathan, Dhruv 31 May 2012 (has links)
We use toric symmetry and blowups to study relationships in the Gromov-Witten theories of $\mathbb{P}^3$ and $\mathbb{P}^1\!\times\!\mathbb{P}^1\!\times\!\mathbb{P}^1$. These two spaces are birationally equivalent via the common blowup space, the permutohedral variety. We prove an equivalence of certain invariants on blowups at only points of $\mathbb{P}^3$ and $\mathbb{P}^1\!\times\!\mathbb{P}^1\!\times\!\mathbb{P}^1$ by showing that these invariants descend from the blowup. Further, the permutohedral variety has nontrivial automorphisms of its cohomology coming from toric symmetry. These symmetries can be forced to descend to the blowups at just points of $\mathbb{P}^3$ and $\mathbb{P}^1\!\times\!\mathbb{P}^1\!\times\!\mathbb{P}^1$. Enumerative consequences are discussed.

Page generated in 0.1173 seconds