• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Toric Symmetry of P1 x P2

Beckwith, Olivia D 01 May 2013 (has links)
Toric varieties are a class of geometric objects with a combinatorial structure encoded in polytopes. P1 x P2 is a well known variety and its polytope is the triangular prism. Studying the symmetries of the triangular prism and its truncations can lead to symmetries of the variety. Many of these symmetries permute the elements of the cohomology ring nontrivially and induce nontrivial relations. We discuss some toric symmetries of P1 x P2, and describe the geometry of the polytope of the corresponding blowups, and analyze the induced action on the cohomology ring. We exhaustively compute the toric symmetries of P1 x P2.

Page generated in 0.0847 seconds