• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lines in Tropical Quadrics

O'Neill, Kevin 01 May 2013 (has links)
Classical algebraic geometry is the study of curves, surfaces, and other varieties defined as the zero set of polynomial equations. Tropical geometry is a branch of algebraic geometry based on the tropical semiring with operations minimization and addition. We introduce the notions of projective space and tropical projective space, which are well-suited for answering enumerative questions, like ours. We attempt to describe the set of tropical lines contained in a tropical quadric surface in $\mathbb{TP}^3$. Analogies with the classical problem and computational techniques based on the idea of a tropical parameterization suggest that the answer is the union of two disjoint conics in $\mathbb{TP}^5$.
2

Arithmetical Graphs, Riemann-Roch Structure for Lattices, and the Frobenius Number Problem

Usatine, Jeremy 01 January 2014 (has links)
If R is a list of positive integers with greatest common denominator equal to 1, calculating the Frobenius number of R is in general NP-hard. Dino Lorenzini defines the arithmetical graph, which naturally arises in arithmetic geometry, and a notion of genus, the g-number, that in specific cases coincides with the Frobenius number of R. A result of Dino Lorenzini's gives a method for quickly calculating upper bounds for the g-number of arithmetical graphs. We discuss the arithmetic geometry related to arithmetical graphs and present an example of an arithmetical graph that arises in this context. We also discuss the construction for Lorenzini's Riemann-Roch structure and how it relates to the Riemann-Roch theorem for finite graphs shown by Matthew Baker and Serguei Norine. We then focus on the connection between the Frobenius number and arithmetical graphs. Using the Laplacian of an arithmetical graph and a formulation of chip-firing on the vertices of an arithmetical graph, we show results that can be used to find arithmetical graphs whose g-numbers correspond to the Frobenius number of R. We describe how this can be used to quickly calculate upper bounds for the Frobenius number of R.
3

Group Actions and Divisors on Tropical Curves

Kutler, Max B. 01 May 2011 (has links)
Tropical geometry is algebraic geometry over the tropical semiring, or min-plus algebra. In this thesis, I discuss the basic geometry of plane tropical curves. By introducing the notion of abstract tropical curves, I am able to pass to a more abstract metric-topological setting. In this setting, I discuss divisors on tropical curves. I begin a study of $G$-invariant divisors and divisor classes.

Page generated in 0.1082 seconds