• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NAD+-Dependent 15-Hydroxyprostaglandin Dehydrogenase from Swine Kidney: Characterization and Kinetic Mechanism

Kung-Chao, Diana T.-Y. 12 1900 (has links)
Cytoplasmic 15-hydroxyprostaglandin dehydrogenase from swine kidney was purified to specific activity of 1.2 U per mg protein, by chromatographic techniques. Native molecular weight of enzyme was estimated at 45,000. Enzyme was inhibited by sulfhydryls, diuretics, and various fatty acids. Substrate studies indicated NAD+ specificity and ability to catabolize prostaglandins, except prostaglandin B and thromboxane B. Initial velocity studies gave intersecting plots conforming to a sequential mechanism. 15-keto-prostaglandin exhibited linear noncompetitive production inhibition with respect to either prostaglandin or NAD+; NAD yielded linear competitive production inhibition with respect to NADH. Results, and those of dead-end inhibition and alternated substrate studies, are consistent with an ordered Bi-Bi mechanism: NAD+ is added first, then prostaglandin; then 15-keto-rostaglandin is released, then NADH.
2

Anti-cancer Effects of MW-03, a Novel Indole Compound, by Inducing 15-Hydroxyprostaglandin Dehydrogenase and Cellular Growth Inhibition in the LS174T Human Colon Cancer Cell Line.

Seira, Naofumi, Yanagisawa, Naoki, Suganami, Akiko, Honda, Takuya, Wasai, Makiko, Regan, John W, Fukushima, Keijo, Yamaguchi, Naoto, Tamura, Yutaka, Arai, Takayoshi, Murayama, Toshihiko, Fujino, Hiromichi 10 1900 (has links)
Increases in the expression of prostaglandin E2 (PGE2) are widely known to be involved in aberrant growth in the early stage of colon cancer development. We herein demonstrated that the novel indole compound MW-03 reduced PGE2-induced cAMP formation by catalization to an inactive metabolite by inducing 15-hydroxyprostaglandin dehydrogenase through the activation of peroxisome proliferator-activated receptor-γ. MW-03 also inhibited colon cancer cell growth by arresting the cell cycle at the S phase. Although the target of MW-03 for cell cycle inhibition has not yet been identified, these dual anti-cancer effects of MW-03 itself and/or its leading compound(s) on colon cancer cells may reduce colon cancer development and, thus, have potential as a novel treatment for the early stage of this disease.
3

Elucidating the metabolism of n-3 polyunsaturated fatty acids and formation of bioactive lipid mediators in human skin

Kiezel-Tsugunova, Magdalena January 2017 (has links)
Human skin has distinct lipid metabolism and production of bioactive lipid mediators that can be modulated by nutritional supplementation with omega-3 polyunsaturated fatty acids (n-3 PUFA), of which eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids exert anti-inflammatory effects. The aims of this project were to gain better understanding of their individual mechanisms in human epidermis and dermis. HaCaT keratinocytes, 46BR.1N fibroblasts, primary human epidermal keratinocytes and dermal fibroblasts were treated with EPA or DHA for 72h and then sham-irradiated or exposed to 15 mJ/cm2 ultraviolet radiation (UVR). Viability was measured by the MTT assay. The expression of cyclooxygenase-2 (COX-2), microsomal prostaglandin synthase-1 (mPGES-1) and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) proteins was explored by western blotting. Human skin explants (n=4 donors) were cultured for 3 or 6 days and supplemented with EPA, DHA or vehicle. Culture media were collected to evaluate tissue damage and PUFA cytotoxicity (lactate dehydrogenase assay). Epidermal and dermal lipid profiles were assessed by gas chromatography and liquid chromatography coupled to tandem mass spectrometry. Primary keratinocytes were treated with fatty acids and various lipid mediators for 48h. Their effect was determined by the scratch assay and transepithelial electrical resistance. UVR upregulated COX-2 in HaCaT and primary epidermal keratinocytes, but did not affect mPGES-1 and 15-PGDH protein expression. UVR upregulated COX-2 and mPGES-1 in 46BR.1N fibroblasts but had no effect on 15-PGDH expression. The same UVR dose did not alter the expression of COX-2, mPGES-1 and 15-PGDH in primary dermal fibroblasts. Only EPA attenuated COX-2 expression in HaCaT and primary keratinocytes and either EPA or DHA had any effect in 46BR.1N and primary fibroblasts. Skin explants showed initial post-biopsy tissue damage. EPA and DHA supplementation augmented cellular levels of the corresponding fatty acids in both epidermis and dermis to a different extent. Increased uptake of DHA in the dermis was accompanied by reduced arachidonic acid levels. EPA treatment stimulated the production of PGE3 and various HEPE in epidermis, while DHA treatment caused high levels of HDHA species in dermis. N-3 PUFA and their derivatives delayed wound healing, cell migration and epidermal barrier permeability, while n-6 PUFA lipids showed the opposite effect. Overall, these findings suggest that EPA and DHA differently affect skin cells and skin, with EPA preference in epidermis and DHA in the dermis. These results highlight the importance of differential skin responses that could be important in skin health and disease.

Page generated in 0.1047 seconds