1 |
Performance of Coded 16-QAM OFDM Modulation with Equalizer Over an Aeronautical ChannelAssegu, Wannaw, Fofanah, Ibrahim 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / The main objectives of iNET (Integrated Network Enhanced Telemetry) are increased data rate and improved spectral efficiency [1]. In this paper we propose that transmission scheme for the physical layer is coded 16-QAM OFDM (Quadrature Amplitude Modulation-Orthogonal Frequency Division Multiplexing) which enables high data rate and spectrum efficiency. However in high mobility scenarios, where the channel is time-varying the receiver design is more challenging. Therefore in this paper pilot-assisted channel estimation is used at the receiver, with convolutional coding and error correction to enhance the performance; while the effect of inter symbol interference (ISI) is mitigated by cyclic prefix. The focus of this paper is to evaluate the performance of OFDM with 16-QAM over an aeronautical channel. The 16-QAM with OFDM enables 4 bits/symbol and provides a higher data rate than QPSK hence it is chosen in this paper. The implementation of OFDM is done using Inverse Fast Fourier Transform (IFFT) and the Fast Fourier Transform (FFT). In this paper we simulate how the performance of Coded 16-QAM OFDM is enhanced using equalization to compensate for inter symbol interference, convolutional coding is used for error correction, puncturing for improving data rate and the insertion of cyclic prefix (CP) to avoid inter carrier interference.
|
2 |
Řešení nasazení DWDM systémů na 100G a 400G / Solution deployment of DWDM systems 100G and 400GGrenar, David January 2016 (has links)
The aim of this master´s thesis is an explanation of the problem of transport optical networks with Dense Wavelength Division Multiplexing. DWDM principle, properties and limit of transmission system. Focus of thesis is also specification properties of migration transmission system to higher speed 40G, 100G and in future to 400G. Part of thesis is outlined the basic division of multiplexing system, there are discussed the basic solutions of wavelength multiplexes CWDM and DWDM, focus for the effects of nonlinear phenomena and parasitic modulation FWM, SPM and XPM in modulation DP-QPSK and 16-QAM. In practicle part we will make measurement of properties of 10G and then experimental measurement parameters on 100G.
|
3 |
Low Correlation Sequences Over AM-PSK And QAM ConstellationsAnand, M 04 1900 (has links)
Direct-Sequence Code Division Multiple Access (DS-CDMA), over the last few years, has become a popular technique and finds a place in many modern communication systems. The performance of this technique is closely linked to the signature (or spreading) sequences employed in the system. In the past, there have been many successful attempts by research groups to construct families of signature sequences that offer the potential gains promised by theoretical bounds. In this thesis, we present constructions of families of signature sequences over the AM-PSK and QAM alphabet with low correlation.
In this thesis, we construct a family of sequences over the 8-ary AM-PSK constella-
tion, Family AOpt(16) that is asymptotically optimal with respect to the Welch bound on maximum magnitude of correlation for complex sequences. The maximum magnitude of correlation for this family, θmax, is upper bounded by √N , where N is the period of the sequences. The 8-ary AM-PSK constellation is a subset of the 16-QAM constellation. We also construct two families of sequences over 16-QAM, Family A16A, and Family A16,B , with the maximum magnitude of correlation upper bounded by √2√N .
We construct a family, A(M 2), of sequences over the 2m+1-ary AM-PSK constellation of period N = 2r- 1 and family size (N + 1)/2m-1 . The 2m+1-ary AM-PSK constellation is a subset of the M 2-QAM constellation with M =2m . The maximum nontrivial normalized correlation parameter is bounded above by θmax < a √N where a ranges from
1.34 in the case of M 2 = 16 to √5 for large m. Apart from low correlation values, the family possesses several interesting and useful features. In Family A(M 2), users have the ability to transmit 2m bits of data per period of the spreading sequence. The sequences in Family A(M 2) are balanced; all points from the 2m+1-ary AM-PSK constellation occur approximately equally often in sequences of long period. The Euclidean distance between the signals assigned to a particular user in A(M 2), corresponding to different data symbols, is larger than the corresponding value for the case when 2m+1-PSK modulation and spreading is used. Perhaps most interestingly, Family A(M 2) permits users on the reverse link of a CDMA system to communicate asynchronously at varying data rates by switching between different QAM constellations.
Family A(M 2) is compatible with QPSK sequence families S(p) in the sense that the maximum correlation magnitude is increased only slightly if one adds sequences from (p) S(p)\ S(0) to Family A(M 2).
We also construct families of sequences over AM-PSK that tradeoff data rate per sequence period and θmax for a given family size.
We have extended the construction of sequences over AM-PSK constellation to construct sequences over the M 2-QAM constellation for M =2m . The QAM sequence families, Families (AM 2), have size, data rate and minimum squared Euclidean distance same as the corresponding AM-PSK construction but have higher values of θmax. Also included in the thesis are constructions for large families of sequences over the M 2-QAM alphabet.
|
4 |
Ekvalizace přenosového kanálu / Equalization of the transmission channelŽlebek, Lukáš January 2018 (has links)
This thesis describes a design of a simulation of transmission of digital information via communication system and equalization of communication function. The layout of communication channel with multiway transmission is described in following part. Next part is about hardware modulator which generate modulated signal which is transmitted via communication channel and after is sampled by A/D convertion card to computer, where is equalizated and demodulated in Simulink. In the last part of this thesis, there is proposal of the laboratory task and its sample solution.
|
Page generated in 0.0131 seconds