• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Insights into the Liquefaction Hazards in Napier and Hastings Based on the Assessment of Data from the 1931 Hawke's Bay, New Zealand, Earthquake

Elkortbawi, Maya Roukos 30 June 2017 (has links)
Hawke's Bay is situated on the east coast of the North Island of New Zealand and has experienced several earthquakes in the past during which liquefaction occurred. The 1931 Hawke's Bay earthquake is particularly interesting because it was the deadliest and one of the most damaging earthquakes in New Zealand's history. The study presented herein provides insights into the liquefaction hazards in Napier and Hastings based on the assessment of data from the 1931 Hawke's Bay event. Previous studies on the liquefaction hazard of the region have been performed, but the present work differs from those in that the liquefaction triggering and severity procedures are used to see if they can accurately predict observations from the 1931 event. Towards this end, the Cone Penetration Test (CPT)-based liquefaction triggering evaluations are used in liquefaction vulnerability assessment frameworks. It was found that liquefaction hazard in Napier is greater than Hastings. Additionally, Liquefaction Potential Index and Liquefaction Severity Number distributions across Napier and Hastings suggest that the analysis frameworks used are over-predicting the liquefaction hazard. This observation was reached through the comparison of predictions and 1931 post-earthquake observations. Possible causes for this over-prediction include the shortcomings in the analysis frameworks to account for the influence of non-liquefied layers in the profile on the severity of surficial liquefaction manifestations, shortcomings of the simplified liquefaction evaluation procedures to fully account for the depositional and compositional characteristics of the soil on liquefaction resistance, and the use of the assumption that the soils below the ground water table are fully saturated, which has been shown not to be the case at sites in Christchurch, New Zealand. The research community is still learning about earthquakes and liquefaction and this study demonstrates how historical earthquake accounts in a region can be used to assess the risk of the region from future earthquakes. / Master of Science

Page generated in 0.4787 seconds