Spelling suggestions: "subject:"2,4dinitroanisole (DNAN)"" "subject:"2,46_dinitroanisole (DNAN)""
1 |
Tailoring the physical properties of energetic materialsWard, Daniel W. January 2017 (has links)
Energetic materials are a class of material that have large amounts of chemical energy stored within their molecular structure. This energy is released upon decomposition, generally in the form of rapidly expanding, hot gases. They are therefore used for a wide range of applications such as; mining, military, and space exploration, and there is therefore a strong desire to improve the overall performance and safety of such materials. On account of reduced sensitivity to initiation by shock and impact, 2,4-dinitroanisole (DNAN) is a potential replacement for 2,4,6-trinitrotoluene (TNT) in melt-cast formulations for military applications. However, up to 15 % irreversible growth of DNAN has been previously observed upon thermal cycling and is a key reason why DNAN has not yet been universally accepted as a replacement for TNT. DNAN exhibits a complex system of polymorphism. One particular transition from DNAN-II to DNAN-III, which occurs at 266 K, has been observed in these studies to cause 8 - 10 % growth of DNAN-II pellets when temperature cycled for 30 cycles between 256 K and 276 K. What was even more concerning was the appearance of cracking of DNAN pellets after being temperature cycled. Doping the crystal structure of DNAN-II with related molecules, such as 2,4-dinitrotoluene or 2,4-dinitroaniline, was investigated in order to probe how steric and electronic factors affect the transition. The addition of varying amounts of 2,4-dinitroaniline suppressed this transition to varying extents and ultimately as low as 150 K with 10 mol% 2,4-dinitroaniline, and potentially eliminated entirely. This doped material has been designated as phase-stabilised DNAN (PS-DNAN). Temperature cycling of PS-DNAN was conducted over the same 256-276 K range, and this material showed no evidence of irreversible growth compared to undoped DNAN pellets, on account of suppression of the II-III transition. The production of PS-DNAN is therefore a possible route to avoiding problematic irreversible growth in DNAN formulations. Melt-casting of DNAN in a sealed environment consistently results in the metastable form-II, which has proven to be stable for in excess of 32 weeks. However, exposure to seeds of form-I, either via deliberate or accidental seeding, rapidly converted the material to the thermodynamically more stable form-I. This transition was accelerated by increasing temperature which rapidly converted pellets of DNAN-II to DNAN-I. When DNAN-I pellets were temperature cycled, they did not undergo a transition to form-III, and as a result did not illustrate irreversible growth. This presents another approach to avoiding problematic growth in DNAN-based materials. Whilst being one of the most widely used oxidisers in propellant formulations, ammonium perchlorate (AP) has several issues; the formation of porous ammonium perchlorate (PAP) can seriously affect the sensitivity of propellants, the hygroscopicity of AP makes handling and manufacture of formulations difficult, and spherical AP exhibits poor binding properties to the polymer binders used in propellant formulations. Several different approaches were taken to combat these issues. Co-crystallisation of AP was attempted in order to produce new AP co-crystals with reduced reactivity towards the formation of PAP. A theoretical based approach using COSMOtherm was used for rapid screening and selection of potential co-formers to be used in lab-based co-crystallisation trials. Co-crystallisation was attempted using multiple stoichiometries and multiple solvents by solvent evaporation, cooling crystallisation, and Resonant Acoustic Mixing methods. Unfortunately no new co-crystals were obtained, presumably on account of the ionic nature of AP which makes co-crystallisation difficult. The mass of untreated AP increased by 0.027% in a humid environment (90% RH) due to the uptake of water, which resulted in significant caking and hence hindering the processability of AP. In an attempt to counteract the hygroscopicity and improve the processability of AP, particles of AP were coated in graphene nanoplatelets using the technique of Resonant Acoustic Mixing. Low mixing energy (G-force) (30 G) resulted in poor coating of AP, but the flowability of this mixure after exposure to moisture was significantly enhanced, most probably as a result of graphene acting as an effective lubricant. Higher mixing energy (90-100 G) was required to break up agglomerates of graphene nanoplatelets and resulted in AP particles efficiently coated with graphene (APGR). Differential scanning calorimetry showed that the energy released upon decomposition of APGR was greater than pure AP, or AP mixed with graphene, due to the intimacy of the AP particle surface and the graphene coating.
|
2 |
Batch soil adsorption and column transport studies of 2,4-dinitroanisole (DNAN) in soilsArthur, Jennifer D., Mark, Noah W., Taylor, Susan, Šimunek, J., Brusseau, M.L., Dontsova, Katerina M. 04 1900 (has links)
The explosive 2,4,6-trinitrotoluene (TNT) is currently a main ingredient in munitions; however the compound has failed to meet the new sensitivity requirements. The replacement compound being tested is 2,4-dinitroanisole (DNAN). DNAN is less sensitive to shock, high temperatures, and has good detonation characteristics. However, DNAN is more soluble than TNT, which can influence transport and fate behavior and thus bio-availability and human exposure potential. The objective of this study was to investigate the environmental fate and transport of DNAN in soil, with specific focus on sorption processes. Batch and column experiments were conducted using soils collected from military installations located across the United States. The soils were characterized for pH, electrical conductivity, specific surface area, cation exchange capacity, and organic carbon content. In the batch rate studies, change in DNAN concentration with time was evaluated using the first order equation, while adsorption isotherms were fitted using linear and Freundlich equations. Solution mass-loss rate coefficients ranged between 0.0002 h(-1) and 0.0068 h(-1). DNAN was strongly adsorbed by soils with linear adsorption coefficients ranging between 0.6 and 6.3 L g(-1), and Freundlich coefficients between 1.3 and 34 mg(1-n) L-n kg(-1). Both linear and Freundlich adsorption coefficients were positively correlated with the amount of organic carbon and cation exchange capacity of the soil, indicating that similar to TNT, organic matter and clay minerals may influence adsorption of DNAN. The results of the miscible-displacement column experiments confirmed the impact of sorption on retardation of DNAN during transport. It was also shown that under flow conditions DNAN transforms readily with formation of amino transformation products, 2-ANAN and 4-ANAN. The magnitudes of retardation and transformation observed in this study result in significant attenuation potential for DNAN, which would be anticipated to contribute to a reduced risk for contamination of ground water from soil residues.
|
3 |
Mineral Surface-Mediated Transformation of Insensitive Munition CompoundsKhatiwada, Raju, Khatiwada, Raju January 2016 (has links)
Abiotic transformation of compounds in the natural environment by metal oxides plays a significant a role in contaminant fate and behavior in soil. The ability of birnessite, ferrihydrite and green rust to abiotically transform insensitive munitions compounds (IMCs) parent (2,4 dinitroanisole [DNAN] and 3-nitro-1,2,4-triazol-5-one [NTO]), and daughter products (2-methoxy-5-nitro aniline [MENA], 2,4-diaminoanisole [DAAN]of DNAN; and 5-amino-1, 2, 4-triazol-3-one [ATO] of NTO) was studied in batch reactors under strictly controlled pH and ionic strength. The objectives of the study were to (i) assess the abiotic transformation potential of soluble DNAN, MENA, DAAN, NTO and ATO by birnessite, ferrihydrite and green rust, and (ii) identify inorganic reaction products. The study was carried out at metal oxide solid to IMC solution ratios (SSR) of 0.15, 1.5 and 15 g kg⁻¹ for birnessite and ferrihydrite and 10 g kg⁻¹ for green rust. Aqueous samples were collected at time intervals between 0 to 3 days after the reaction initiation and analyzed using HPLC with UV detection. Results indicated that DNAN was resistant to oxidation by birnessite and ferrihydrite at given solid to solution ratios. MENA was susceptible to rapid oxidation by birnessite (first order rate constant, 𝑘=1.36 h⁻¹ at 15 g kg⁻¹ SSR). The nitro groups from MENA largely mineralized to nitrite (NO₂⁻). In contrast, ferrihydrite did not oxidize MENA. DAAN was susceptible to oxidation by both birnessite and ferrihydrite, but about a six times higher oxidation rate was observed with birnessite (𝑘=1.18 h⁻¹) as compared to ferrihydrite (𝑘=0.22 h⁻¹) at an SSR of 1.5 g kg⁻¹. There was a complete loss of DAAN from solution after 5 min with birnessite at an SSR 15 g kg⁻¹ (𝑘≥90.5 h⁻¹). CO₂ evolution experiments indicate mineralization of 15 and 12 % of carbon associated with MENA and DAAN, respectively; under aerobic conditions with birnessite at an SSR of 15 g kg⁻¹. NTO was resistant to oxidation by birnessite and ferrihydrite at any SSR; however, there was slight initial loss from solution upon reaction with ferrihydrite at 0.15 and 1.5 g kg⁻¹ SSR and complete loss at 15 g kg⁻¹ SSR due to adsorption. ATO was susceptible to oxidation by birnessite and sorption by ferrihydrite. The first order rate constants (𝑘) for ATO with birnessite at 0.15 and 1.5 g kg⁻¹ SSR are 0.04 and 3.03 h⁻¹ respectively. There was complete loss of ATO from solution with birnessite at 15 g kg⁻¹ SSR (𝑘 ≥ 90.2 h⁻¹) within 5 min of reaction. Transformation products analysis revealed urea, CO₂ and N₂ as major reaction products with 44 % urea recovery and recovery of 51.5 % of ATO carbon as CO₂ and 47.8 % of ATO nitrogen as N₂ at 15 g kg⁻¹ SSR. The oxidation of ATO in the presence of birnessite was found to be independent of dissolved O₂. The results indicate that ATO, the major reductive (bio)transformation product of NTO, is readily oxidized by birnessite in soil. NTO was found strongly sorbed to ferrihydrite as compared to that of ATO. The results of the green rust experiment indicate rapid abiotic reduction of parent compounds NTO and DNAN to their reduced aminated daughter products. NTO was generally reductively transformed to 5-amino-1, 2, 4-triazol-3-one (ATO) within 10 min and completely reacted in 20 min. DNAN was rapidly transformed to its reduced daughter products MENA and 4-methoxy-5-nitroaniline (iMENA). The reduction occurred with a distinctive, staggered regioselectivity. Over the first 10 min, the para-nitro group of DNAN was selectively reduced, generating iMENA. Thereafter the ortho-nitro group was preferentially reduced, generating MENA. Both iMENA and MENA were subsequently transformed to the final reduction product DAAN within 1 day. X-ray absorption near edge spectroscopy data suggested oxidative transformation of green rust to lepidocrocite-like mineral forms, accounting for 94 % of the mineral products in the case of NTO reaction as compared to 62 % in the case of DNAN. The results taken as whole suggest that complete abiotic transformation of IMCs could be achieved by coupled stepwise green rust and birnessite treatments.
|
Page generated in 0.0355 seconds