• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The synthesis of nucleoside analogues from nitroimidazole precursors

Clayton, Russell January 2001 (has links)
An introduction to nucleoside analogues containing heterocyclic sugar mimics and their synthesis is presented. This includes various ring sizes and different heteroatom combinations. concentrated on work between 1995-2000. The synthesis of novel nucleoside analogues from nitroimidazole precursors has been investigated. The regioisorners I-vinyl-4-nitroimidazole and I-vinyl-S-nitroimidazole have been synthesised from the readily available 4/S-nitroimidazole. Also synthesised from 4/S-nitroimidazoIe IS 3-vinyl-imidazo[ 4' ,S' :S,6]pyrido[2,3- d]pyrimidin-8-one, the pyridine stretched analogue of 3-vinylinosine. 1,3-Dipolar cycloaddition reactions of these three molecules are studied, with stabilised and unstabilised 1,3-dipolar compounds. to produce heterocyclic nucleoside analogues. Structures of these cycloadducts are investigated using nrnr studies to determine the regiochemistry of the reactions. This nrnr evidence is supported my MO calculations. Further studies have established synthetic routes to the pyridine stretched analogues of 2'-deoxyadenosine and 2'-deoxyinosine from deoxyribose and 4/5- nitroimidazole, involving directing the coupling of a chlorosugar to the sodium salt of 4-nitroimidazoIe to yield a maximum of the S-nitroimidazole isomer product
2

DNA Minor Groove Modifications: Synthesis and Application of 3-deaza-3-substituted-2'-deoxyadenosine Analogues

Salandria, Kerry Jane January 2011 (has links)
Thesis advisor: Larry W. McLaughlin / Nucleic acids are fundamental biomolecules responsible for all activities of a living cell. DNA serves as an instruction manual to the cell, containing blueprints and directions for all cellular processes, while RNA serves to carry out the messages held within DNA. Research into the structure, stability, and function of nucleic acids has revealed much about the origin and evolution of life. The ultimate goal of this work is to understand how molecules bind and associate within the minor groove of double stranded, helical DNA. A series of 2'-deoxyadenosine analogues are modified at the three position by replacing the N3-nitrogen with carbon. Substitution at this position is designed to emulate the effects of removing hydrogen bond acceptors, introducing steric bulk, and tethering functional groups of interest into the minor groove. These functional groups mimic small molecules that have been shown to bind within the minor groove of A-T rich sequences as well as serve as a platform for further substitution by fluorescent tags. The synthetic effort needed to obtain purine nucleosides containing each of these modifications was non-trivial. New methodologies unveiled directing and protecting strategies towards the desired isomer of these modified nucleosides in higher yields than those previously deemed acceptable. Application of these modified nucleosides into duplex DNA reveals thermodynamic parameters for how small molecules bind to the minor groove and the effects of introducing biomarkers into an unprecedented region of DNA. / Thesis (PhD) — Boston College, 2011. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
3

Synthesis of Anthraquinone Derivatives and their Conjugates with 2'-Deoxynucleosides as New Probes for Electron Transfer Studies in DNA

Abou-Elkhair, Reham A. I. 18 July 2008 (has links)
Anthraquinone (AQ) has been used in electron transfer studies in DNA. The focus of this dissertation is the synthesis of conjugates between AQ derivatives and 2’-deoxyadenosine (dA), which can be used to induce adenine oxidation in DNA. Different AQ derivatives were attached to dA via ethynyl or ethanyl linkers. If incorporated into DNA, these short linkers should enable regiocontrol for electron transfer from adenine within the DNA duplex structure. The challenge in working with anthraquinone-2’-deoxynucleosides conjugates is that they and their intermediates are insoluble in water and only sparingly soluble in most organic solvents. A strategy used to overcome this problem was the use of either tert-butyldiphenylsilyl (TBDPS) or 4’,4-dimethoxytrityl (DMTr) 5’-protected deoxynucleosides as starting materials. A water-soluble, ethynyl-linked AQ-dA conjugate with a 3’-benzyl hydrogen phosphate was synthesized using DMTr protection. The DMTr group was not stable to the hydrogenation required to make the ethanyl-linked AQ-dA conjugate with 3’-benzyl hydrogen phosphate. Hence the latter was synthesized starting with the TBDPS protecting group. Both of these syntheses were based on the Pd coupling between ethynylanthraquinone and 8-bromodeoxyadenosine derivatives. New conjugates between AQ and A, in which the AQ moieties have been modified with formyl, trifluoroacetyl and methyl ester groups as electron withdrawing substituents were also synthesized. The synthesis of these AQ-dA conjugates was based on Pd coupling between bromoanthraquinone and 8-ethynyldeoxyadenosine derivatives. This route avoided the use of ethynylanthraquinone derivatives that had extremely low solubility and photoinstability. Other anthraquinones with electron withdrawing groups (which should provide enhanced driving force to enable respective AQ derivative to oxidize adenine) were synthesized as models. Cyclic voltammetry showed that the conjugate with the two ester groups and ethynyl linker was the most easily reduced of the derivatives synthesized. Conjugates between AQ and dU were also synthesized. Those conjugates can potentially be used to oxidize guanine or adenine or they can be used as a deep trap for an electron in reduced DNA.

Page generated in 0.0501 seconds