Spelling suggestions: "subject:"2oxo acid"" "subject:"2roxo acid""
1 |
Endurance Exercise Training Attenuates Leucine Oxidation and Branched-Chain 2-Oxo Acid Dehydrogenase Activation During Exercise in HumansMcKenzie, Scott 14 April 1999 (has links)
Endurance exercise has been shown to both raise and lower leucine oxidation in studies in rodents. We studied the effects of a 38 d endurance exercise training program upon leucine turnover during a 90 min exercise bout at 60 % VO_2peak in 6 males and 6 females. Subjects were studied at both the same absolute (ABS) and relative (REL) exercise intensities post-training. Pre (PRE)- and post-training measurements were taken
for analysis of: L-[1-^13C]leucine turnover, muscle branched-chain oxoacid dehydrogenase activity (BCOAD), muscle glycogen, phosphocreatine and ATP utilization, and resting enzyme activity of citrate synthase (CS) and NADH-cytochrome c-oxidoreductase (complex I-III). We also determined total substrate oxidation by indirect calorimetry, and plasma lactate, glucose, and insulin concentrations. The exercise training resulted in a significant increase in both CS (P < 0.001) and complex I- III (P < 0.05) activities. Leucine oxidation increased during exercise for the pre-training trial (P < 0.001), however, there was no increase for either the post-training ABS or REL trial. Leucine oxidation was significantly lower for females at all time points (P < 0.01). Total BCOAD activity was also significantly increased when comparing the PRE to both ABS and REL
trials (P < 0.001). The % activation of BCOAD was significantly increased from t=0 to t=90 in both the PRE and REL exercise trials with the increase in PRE being greater (P < 0.001 (PRE), and P < 0.05 (REL)). Exercise RER was lower for females vs. males (P< 0.05). In addition, the ABS trial was significantly lower than PRE and REL (P < 0.01). Plasma lactate was significantly lower at all time points for ABS vs. PRE (P < 0.001) and
REL vs. PRE at t=30 min of exercise (P < 0.001). Resting muscle glycogen was higher for both ABS and REL vs. PRE (P < 0.001). In conclusion, we found that 38 d of endurance exercise training significantly attenuated both leucine oxidation and BCOAD activation during 90 min of endurance exercise at 60 % VO_2peak for both absolute and relative exercise intensities. In addition, females were also shown to oxidize a greater proportion of energy from lipid and a lesser amount from carbohydrates and proteins during exercise. / Thesis / Master of Science (MS)
|
Page generated in 0.0432 seconds