• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • Tagged with
  • 39
  • 39
  • 39
  • 39
  • 36
  • 36
  • 30
  • 30
  • 30
  • 30
  • 30
  • 30
  • 30
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental tests of quantum nonlinear dynamics in atom optics

Hensinger, W. Unknown Date (has links)
No description available.
2

Atom chips and non-linear dynamics in macroscopic atom traps

Upcroft, B. Unknown Date (has links)
No description available.
3

Entanglement, Geometry and Quantum Computation

Dowling, M. R. Unknown Date (has links)
No description available.
4

Entanglement, geometry and quantum computation

Dowling, Mark Unknown Date (has links)
This thesis addresses a number of problems within the emerging field of quantum information science. Quantum information science can be said to encompass the more-established disciplines of quantum computation and quantum information, as well as rather more recent attempts to apply concepts, tools and techniques from these disciplines to gain greater understanding of quantum systems in general. The role of entanglement — non-classical correlation — has been of particular interest to date. Part I contributes to this later goal. In particular, we establish a connection between the energy of a many-body quantum system and the idea of an entanglement witness from the theory of mixed-state entanglement. This connection allows mathematical results about entanglement witnesses to be translated into physical results about many-body quantum systems, specifically energy and temperature thresholds for entanglement. For the case of two qubits we are able to establish fairly detailed results about the behaviour of entanglement with temperature. We also study entanglement in systems of indistinguishable particles, where even the question of which quantum states should be regarded as entangled has been the subject of much controversy. We aim to clarify this issue by applying Wiseman and Vaccaro’s notion of entanglement of particles to a number of wellunderstood model systems. We discuss the advantages of the entanglement of particles approach compared with other methods in common use. Finally, we study the operational meaning of superselection rules in quantum physics, in particular the connection to the existence or not of an appropriate reference frame. We propose an experiment that aims to exhibit a coherent superposition of an atom and a molecule, apparently in violation of the commonly-accepted particle-number superselection rule. This result sheds light on the entanglement of particles approach to entanglement of indistinguishable particles. Part II returns to a fundamental question at the heart of quantum computation and quantum information, namely: how many quantum gates are required to perform a particular quantum computation? In other words, how efficiently can a quantum computer solve a particular computational problem? We establish a connection between this question and the field of Riemannian geometry. Intuitively, optimal quantum circuits correspond to “free-falling” along the shortest path between two points in a curved space. This opens up the possibility of using Riemannian geometry to study quantum computation, a possibility that was previously unknown. We provide explicit calculations of all the basic geometric quantities associated with the space, and give some preliminary results of applying geometric ideas to quantum computing. Finally, we explore more generally the connection between optimal control and quantum circuit complexity, of which the Riemannian metric described above can be viewed as a special case.
5

Entanglement, geometry and quantum computation

Dowling, Mark Unknown Date (has links)
This thesis addresses a number of problems within the emerging field of quantum information science. Quantum information science can be said to encompass the more-established disciplines of quantum computation and quantum information, as well as rather more recent attempts to apply concepts, tools and techniques from these disciplines to gain greater understanding of quantum systems in general. The role of entanglement — non-classical correlation — has been of particular interest to date. Part I contributes to this later goal. In particular, we establish a connection between the energy of a many-body quantum system and the idea of an entanglement witness from the theory of mixed-state entanglement. This connection allows mathematical results about entanglement witnesses to be translated into physical results about many-body quantum systems, specifically energy and temperature thresholds for entanglement. For the case of two qubits we are able to establish fairly detailed results about the behaviour of entanglement with temperature. We also study entanglement in systems of indistinguishable particles, where even the question of which quantum states should be regarded as entangled has been the subject of much controversy. We aim to clarify this issue by applying Wiseman and Vaccaro’s notion of entanglement of particles to a number of wellunderstood model systems. We discuss the advantages of the entanglement of particles approach compared with other methods in common use. Finally, we study the operational meaning of superselection rules in quantum physics, in particular the connection to the existence or not of an appropriate reference frame. We propose an experiment that aims to exhibit a coherent superposition of an atom and a molecule, apparently in violation of the commonly-accepted particle-number superselection rule. This result sheds light on the entanglement of particles approach to entanglement of indistinguishable particles. Part II returns to a fundamental question at the heart of quantum computation and quantum information, namely: how many quantum gates are required to perform a particular quantum computation? In other words, how efficiently can a quantum computer solve a particular computational problem? We establish a connection between this question and the field of Riemannian geometry. Intuitively, optimal quantum circuits correspond to “free-falling” along the shortest path between two points in a curved space. This opens up the possibility of using Riemannian geometry to study quantum computation, a possibility that was previously unknown. We provide explicit calculations of all the basic geometric quantities associated with the space, and give some preliminary results of applying geometric ideas to quantum computing. Finally, we explore more generally the connection between optimal control and quantum circuit complexity, of which the Riemannian metric described above can be viewed as a special case.
6

Entanglement, geometry and quantum computation

Dowling, Mark Unknown Date (has links)
This thesis addresses a number of problems within the emerging field of quantum information science. Quantum information science can be said to encompass the more-established disciplines of quantum computation and quantum information, as well as rather more recent attempts to apply concepts, tools and techniques from these disciplines to gain greater understanding of quantum systems in general. The role of entanglement — non-classical correlation — has been of particular interest to date. Part I contributes to this later goal. In particular, we establish a connection between the energy of a many-body quantum system and the idea of an entanglement witness from the theory of mixed-state entanglement. This connection allows mathematical results about entanglement witnesses to be translated into physical results about many-body quantum systems, specifically energy and temperature thresholds for entanglement. For the case of two qubits we are able to establish fairly detailed results about the behaviour of entanglement with temperature. We also study entanglement in systems of indistinguishable particles, where even the question of which quantum states should be regarded as entangled has been the subject of much controversy. We aim to clarify this issue by applying Wiseman and Vaccaro’s notion of entanglement of particles to a number of wellunderstood model systems. We discuss the advantages of the entanglement of particles approach compared with other methods in common use. Finally, we study the operational meaning of superselection rules in quantum physics, in particular the connection to the existence or not of an appropriate reference frame. We propose an experiment that aims to exhibit a coherent superposition of an atom and a molecule, apparently in violation of the commonly-accepted particle-number superselection rule. This result sheds light on the entanglement of particles approach to entanglement of indistinguishable particles. Part II returns to a fundamental question at the heart of quantum computation and quantum information, namely: how many quantum gates are required to perform a particular quantum computation? In other words, how efficiently can a quantum computer solve a particular computational problem? We establish a connection between this question and the field of Riemannian geometry. Intuitively, optimal quantum circuits correspond to “free-falling” along the shortest path between two points in a curved space. This opens up the possibility of using Riemannian geometry to study quantum computation, a possibility that was previously unknown. We provide explicit calculations of all the basic geometric quantities associated with the space, and give some preliminary results of applying geometric ideas to quantum computing. Finally, we explore more generally the connection between optimal control and quantum circuit complexity, of which the Riemannian metric described above can be viewed as a special case.
7

Entanglement, geometry and quantum computation

Dowling, Mark Unknown Date (has links)
This thesis addresses a number of problems within the emerging field of quantum information science. Quantum information science can be said to encompass the more-established disciplines of quantum computation and quantum information, as well as rather more recent attempts to apply concepts, tools and techniques from these disciplines to gain greater understanding of quantum systems in general. The role of entanglement — non-classical correlation — has been of particular interest to date. Part I contributes to this later goal. In particular, we establish a connection between the energy of a many-body quantum system and the idea of an entanglement witness from the theory of mixed-state entanglement. This connection allows mathematical results about entanglement witnesses to be translated into physical results about many-body quantum systems, specifically energy and temperature thresholds for entanglement. For the case of two qubits we are able to establish fairly detailed results about the behaviour of entanglement with temperature. We also study entanglement in systems of indistinguishable particles, where even the question of which quantum states should be regarded as entangled has been the subject of much controversy. We aim to clarify this issue by applying Wiseman and Vaccaro’s notion of entanglement of particles to a number of wellunderstood model systems. We discuss the advantages of the entanglement of particles approach compared with other methods in common use. Finally, we study the operational meaning of superselection rules in quantum physics, in particular the connection to the existence or not of an appropriate reference frame. We propose an experiment that aims to exhibit a coherent superposition of an atom and a molecule, apparently in violation of the commonly-accepted particle-number superselection rule. This result sheds light on the entanglement of particles approach to entanglement of indistinguishable particles. Part II returns to a fundamental question at the heart of quantum computation and quantum information, namely: how many quantum gates are required to perform a particular quantum computation? In other words, how efficiently can a quantum computer solve a particular computational problem? We establish a connection between this question and the field of Riemannian geometry. Intuitively, optimal quantum circuits correspond to “free-falling” along the shortest path between two points in a curved space. This opens up the possibility of using Riemannian geometry to study quantum computation, a possibility that was previously unknown. We provide explicit calculations of all the basic geometric quantities associated with the space, and give some preliminary results of applying geometric ideas to quantum computing. Finally, we explore more generally the connection between optimal control and quantum circuit complexity, of which the Riemannian metric described above can be viewed as a special case.
8

Entanglement, geometry and quantum computation

Dowling, Mark Unknown Date (has links)
This thesis addresses a number of problems within the emerging field of quantum information science. Quantum information science can be said to encompass the more-established disciplines of quantum computation and quantum information, as well as rather more recent attempts to apply concepts, tools and techniques from these disciplines to gain greater understanding of quantum systems in general. The role of entanglement — non-classical correlation — has been of particular interest to date. Part I contributes to this later goal. In particular, we establish a connection between the energy of a many-body quantum system and the idea of an entanglement witness from the theory of mixed-state entanglement. This connection allows mathematical results about entanglement witnesses to be translated into physical results about many-body quantum systems, specifically energy and temperature thresholds for entanglement. For the case of two qubits we are able to establish fairly detailed results about the behaviour of entanglement with temperature. We also study entanglement in systems of indistinguishable particles, where even the question of which quantum states should be regarded as entangled has been the subject of much controversy. We aim to clarify this issue by applying Wiseman and Vaccaro’s notion of entanglement of particles to a number of wellunderstood model systems. We discuss the advantages of the entanglement of particles approach compared with other methods in common use. Finally, we study the operational meaning of superselection rules in quantum physics, in particular the connection to the existence or not of an appropriate reference frame. We propose an experiment that aims to exhibit a coherent superposition of an atom and a molecule, apparently in violation of the commonly-accepted particle-number superselection rule. This result sheds light on the entanglement of particles approach to entanglement of indistinguishable particles. Part II returns to a fundamental question at the heart of quantum computation and quantum information, namely: how many quantum gates are required to perform a particular quantum computation? In other words, how efficiently can a quantum computer solve a particular computational problem? We establish a connection between this question and the field of Riemannian geometry. Intuitively, optimal quantum circuits correspond to “free-falling” along the shortest path between two points in a curved space. This opens up the possibility of using Riemannian geometry to study quantum computation, a possibility that was previously unknown. We provide explicit calculations of all the basic geometric quantities associated with the space, and give some preliminary results of applying geometric ideas to quantum computing. Finally, we explore more generally the connection between optimal control and quantum circuit complexity, of which the Riemannian metric described above can be viewed as a special case.
9

Entanglement, geometry and quantum computation

Dowling, Mark Unknown Date (has links)
This thesis addresses a number of problems within the emerging field of quantum information science. Quantum information science can be said to encompass the more-established disciplines of quantum computation and quantum information, as well as rather more recent attempts to apply concepts, tools and techniques from these disciplines to gain greater understanding of quantum systems in general. The role of entanglement — non-classical correlation — has been of particular interest to date. Part I contributes to this later goal. In particular, we establish a connection between the energy of a many-body quantum system and the idea of an entanglement witness from the theory of mixed-state entanglement. This connection allows mathematical results about entanglement witnesses to be translated into physical results about many-body quantum systems, specifically energy and temperature thresholds for entanglement. For the case of two qubits we are able to establish fairly detailed results about the behaviour of entanglement with temperature. We also study entanglement in systems of indistinguishable particles, where even the question of which quantum states should be regarded as entangled has been the subject of much controversy. We aim to clarify this issue by applying Wiseman and Vaccaro’s notion of entanglement of particles to a number of wellunderstood model systems. We discuss the advantages of the entanglement of particles approach compared with other methods in common use. Finally, we study the operational meaning of superselection rules in quantum physics, in particular the connection to the existence or not of an appropriate reference frame. We propose an experiment that aims to exhibit a coherent superposition of an atom and a molecule, apparently in violation of the commonly-accepted particle-number superselection rule. This result sheds light on the entanglement of particles approach to entanglement of indistinguishable particles. Part II returns to a fundamental question at the heart of quantum computation and quantum information, namely: how many quantum gates are required to perform a particular quantum computation? In other words, how efficiently can a quantum computer solve a particular computational problem? We establish a connection between this question and the field of Riemannian geometry. Intuitively, optimal quantum circuits correspond to “free-falling” along the shortest path between two points in a curved space. This opens up the possibility of using Riemannian geometry to study quantum computation, a possibility that was previously unknown. We provide explicit calculations of all the basic geometric quantities associated with the space, and give some preliminary results of applying geometric ideas to quantum computing. Finally, we explore more generally the connection between optimal control and quantum circuit complexity, of which the Riemannian metric described above can be viewed as a special case.
10

Rheo-NMR studies of macromolecules : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Physics at Massey University, Palmerston North, New Zealand

Kakubayashi, Motoko January 2008 (has links)
In this thesis, the effects of simple shear flow on macromolecular structure and interactions are investigated in detail via a combination of Nuclear Magnetic Resonance (NMR) spectroscopy and rheology, namely Rheo-NMR. A specially designed NMR couette shear cell and benchtop shear cell, developed in-house, demonstrated that the direct measurement of the above phenomena is possible. First, to determine whether the shear cells were creating simple shear flow, results were reproduced from literature studies of liquid crystal systems which report shear effects on: Cetyl Trimethyl Ammonium Bromide (CTAB) in deuterium oxide, and Poly(gamma-benzyl-L-glutamate) (PBLG) in m-cresol. Next, the possible conformational changes to protein structure brought about by shear were investigated by applying shear to Bovine -lactogobulin ( -Lg). As the protein was sheared, a small, irreversible conformational change was observed by means of one-dimensional and two-dimensional 1H NMR with reasonable reproducibility. However, no observable change was detected by means of light scattering. A large conformational change was observed after shearing a destabilized -Lg sample containing 10% Trifluoroethanol (TFE) (v/v). From an NMR point of view, the sheared state was similar to the structure of -Lg containing large amounts of -helices and, interestingly, similar to the structure of -Lg containing -sheet amyloid fibrils. Gel electrophoresis tests suggested that the changes were caused by hydrophobic interactions. Unfortunately, this proved to be difficult to reproduce. The effect of shear on an inter-macromolecular interaction was investigated by applying shear during an enzyme reaction of pectin methylesterase (PME) on pectin. Experimental method and analysis developments are described in detail. It was observed that under the conditions studied, shear does not interfere with the de-esterification of pectin with two types of PME, which have different action mechanisms at average shear rates up to 1570 s-1.

Page generated in 0.0968 seconds