• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Qingfen_Pan_Dissertation

Pan, Qingfen 27 May 2016 (has links)
EFFECTS OF 24R,25(OH)2D3 IN THE TERATMENT OF KNEE OSTEOARTHRITIS Qingfen Pan 117 Pages Directed by Dr. Barbara Boyan Osteoarthritis (OA) is a degenerative disease characterized by joint inflammation and cartilage degeneration due to matrix degradation and chondrocyte apoptosis. Previously, drug therapies have been developed that aim to ease pain and reduce local inflammation. Currently, no effective drug exists that has no significant side effects. Therefore, an unmet medical demand exists for development of tissue-engineering strategies to promote articular cartilage repair and regeneration to treat OA. 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] is an attractive option for articular cartilage repair because of its anti-inflammatory and anti-apoptotic properties. 24R,25(OH)2D3, which is a naturally occurring metabolite of vitamin D3, also has not been shown to cause toxic side effects. Results from the study demonstrate that 24R,25(OH)2D3 can inhibit chondrocyte apoptosis and suppress the production of catabolic factors that result in cartilage degeneration in the in vitro model. Furthermore, although 24R,25(OH)2D3 regulates components of TGF-β1 pathway, the effect of 24R,25(OH)2D3 is not mediated through TGF-β1 signaling. In vivo delivery of 24R,25(OH)2D3 prevented cartilage degeneration and disease progression. In addition, intraarticular injection of 24R,25(OH)2D3 had an effect on cytokines and growth factors production both locally and systemically. Human articular chondrocytes responded to 24R,25(OH)2D3 treatment in both sex and maturation dependent manner. Collectively, results from this study suggest that 24R,25(OH)2D3 ccould be used as a clinical therapy for knee OA.
2

The Effects of 24R, 25-Dihydroxyvitamin D3 and 24S, 25-Dihydroxyvitamin D3 on Phosphate Transport in Vivo

Meng, Yu 01 December 2011 (has links)
The steroid hormone 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] rapidly stimulates the uptake of phosphate in isolated chick intestinal cells, while the steroid 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] inhibits the rapid stimulation by 1,25(OH)2D3. Previous work in this laboratory has indicated that 24,25(OH)2D3 inhibits phosphate uptake in isolated intestinal cells and perfused duodenal loops. It is critical to show this effect in the whole animal to determine the presence of any confounding factors. Studies were therefore undertaken to determine if 24,25(OH)2D3 had a similar effect in vivo. 24,25(OH)2D3 has two isomers which are 24R, 25dihydroxyvitamin D3 [24R,25(OH)2D3] and 24S, 25dihydroxyvitamin D3 [24S,25(OH)2D3]. We studied these two isomers separately and tested them over a time course of 1, 5, 10, 15, and 18 h after steroid using chicks on regular diet, but fasted, and chicks on a lower vitamin D diet. All chicks were anesthetized prior to surgical exposure of the duodenal loop and injection of a solution containing H3 32PO4 into the lumen. An initial time course study of phosphate transport determined that 3 to 9 min of absorption in vivo was in a linear range, as judged by serum levels of radioactivity. Chicks were then injected with either 200 μg of 24R,25(OH)2D3, 20 μg of 24S,25(OH)2D3, or vehicle for control groups within the same time course studies. We found that the isomers had different effects on phosphate absorption. 24R,25(OH)2D3 had a hypophosphatemic effect in vivo. The serum levels of radionuclide revealed hypophosphatemic effects at 1, 5, 15, and 18 h time points with a decrease of 20%, 42%, 39%, and 43%, respectively, (P< 0.05) compared with controls; chicks raised on a low vitamin D diet also showed a decrease in phosphate absorption at 10 h time point by 33%. In contrast, 24S,25(OH)2D3 stimulated intestinal phosphate absorption at the 5-h time point by 64%, but had no other effects at the other time points tested. Because 24S,25(OH)2D3 was largely ineffective, dose-response studies were undertaken with only the 24R,25(OH)2D3 isomer. In comparing phosphate absorption in chicks fasted 18 h, and dosed with vehicle, 100 μg, 200 μg, or 300 μg of steroid 1 h prior to experimentation it was found that the lowest dose increased absorption to 99% of controls, while the 200 μg and 300 μg doses decreased phosphate absorption. (48 pages)
3

ERalpha isoforms modulate the tumorigenicity of 24R,25(OH)2D3 in estrogen-responsive cancer

Verma, Anjali 01 January 2019 (has links)
Over 200,000 cases of breast cancer are diagnosed every year. Nearly 20% of these patients supplement their diets with some form of vitamin D. This high frequency of vitamin D supplement use may be due in part to research suggesting that cancer patients with higher serum vitamin D3 levels have better prognoses than patients with low serum vitamin D3. However, double-blind clinical trials on the efficacy of vitamin D3 supplementation in breast cancer have been inconclusive. A recent meta-analysis showed evidence of reduced cancer recurrence in patients taking vitamin D3 supplements who had ‘estrogen receptor positive’ (ERα66+) breast cancer, but not those who had estrogen receptor negative’ (ERα66-) breast cancer. Once ingested, vitamin D3 is metabolized in the liver into the circulating pre-hormone 25(OH)D3, which is then further metabolized into 1a,25(OH)2D3 and 24R,25(OH)2D3. 24R,25(OH)2D3 has been shown to activate a number of membrane signaling pathways, some of which overlap with 17b-estradiol (E2) signaling through ERα36, a membrane isoform of ERα66. The central hypothesis of this thesis was that 24R,25(OH)2D3 is tumorigenic in certain cancers and that this tumorigenicity is mediated in part by ERa isoforms. E2 signaling through ERa36 has been described in the ERa66-, ERa36+ breast cancer cell line HCC381. Specific aim 1 determined whether E2 signaling through ERa36 was tumorigenic other cancers with different ERa profiles. Specific aim 2 determined how 24R,25(OH)2D3 affected tumorigenicity in breast cancer using the common breast cancer cell line MCF7 (ERa66+, ERa36+) as a model. Specific aim 3 investigated the role of ERa isoforms in 24R,25(OH)2D3 signaling in breast cancer cell lines by comparing the tumorigenic effects of 24R,25(OH)2D3 in MCF7 cells (ERa66+, ERa36+) and HCC38 cells (ERa66-, ERa36+). To determine whether ERa66 regulates the effects of 24R,25(OH)2D3, ERa66 was expressed in two ERα66- cell lines. The effect of 24R,25(OH)2D3 on apoptosis was assessed in wild-type and ERa-expressing cell lines.

Page generated in 0.0225 seconds