• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ring C Transformations of Podocarpic Acid

Missen, Alan William January 1971 (has links)
This thesis describes Further studies on the utilisation of the diterpenoid natural product , 12-hydrxypodocarpa-8,11,13-trim 19-oic acid* (podocarpic acid) (1) . In particular it describes transformations of the C-ring to give suitable intermediates for the synthesis of optically active steroids and terpenoids. An investigation has been carried out on the Birch reduction of 12-methoxypodocarpa-8,11,13-trien-19-ol (8), and conditions for the optimum formation of the ketonic products (10) and (12) are suggested. The enones (25) and (26) have been synthesised from 12-hydroxypodocarpa-8,11,13-trien-19-oic acid (1) by sequences involving reduction of the aromatic ring followed by ring C transformations. Methyl 12-hydroxypodocarpa-8,11,13-trien-19-oate (3) has been converted in ca. 60% yield to the dextrorotatory C 13 methyl ether which has then been reduced in good yield to the enone (163). Potential routes for conversion of the enones (25), (26), and (163)into steroidal analogues are described. Initial steps in the transformation of the C 13 methyl ether(62) into an intermediate (176) suitable for the synthesis of (+)-a-onocerin (80) have been investigated. A preliminary study on the synthesis of the C 14 phenol (190) or its methyl ether (191) is also reported. * The numbering system used throughout this thesis is that proposed by J.W. Rowe (personal communication to Professor R. C. Cambie) in "The Common and Systematic Nomenclature of Cyclic Diterpenes", 3rd Revision, Oct. 1966, to be submitted to the IUPAC Commission on Organic Nomenclature (see page 144)
2

Ring C Transformations of Podocarpic Acid

Missen, Alan William January 1971 (has links)
This thesis describes Further studies on the utilisation of the diterpenoid natural product , 12-hydrxypodocarpa-8,11,13-trim 19-oic acid* (podocarpic acid) (1) . In particular it describes transformations of the C-ring to give suitable intermediates for the synthesis of optically active steroids and terpenoids. An investigation has been carried out on the Birch reduction of 12-methoxypodocarpa-8,11,13-trien-19-ol (8), and conditions for the optimum formation of the ketonic products (10) and (12) are suggested. The enones (25) and (26) have been synthesised from 12-hydroxypodocarpa-8,11,13-trien-19-oic acid (1) by sequences involving reduction of the aromatic ring followed by ring C transformations. Methyl 12-hydroxypodocarpa-8,11,13-trien-19-oate (3) has been converted in ca. 60% yield to the dextrorotatory C 13 methyl ether which has then been reduced in good yield to the enone (163). Potential routes for conversion of the enones (25), (26), and (163)into steroidal analogues are described. Initial steps in the transformation of the C 13 methyl ether(62) into an intermediate (176) suitable for the synthesis of (+)-a-onocerin (80) have been investigated. A preliminary study on the synthesis of the C 14 phenol (190) or its methyl ether (191) is also reported. * The numbering system used throughout this thesis is that proposed by J.W. Rowe (personal communication to Professor R. C. Cambie) in "The Common and Systematic Nomenclature of Cyclic Diterpenes", 3rd Revision, Oct. 1966, to be submitted to the IUPAC Commission on Organic Nomenclature (see page 144)
3

Ring C Transformations of Podocarpic Acid

Missen, Alan William January 1971 (has links)
This thesis describes Further studies on the utilisation of the diterpenoid natural product , 12-hydrxypodocarpa-8,11,13-trim 19-oic acid* (podocarpic acid) (1) . In particular it describes transformations of the C-ring to give suitable intermediates for the synthesis of optically active steroids and terpenoids. An investigation has been carried out on the Birch reduction of 12-methoxypodocarpa-8,11,13-trien-19-ol (8), and conditions for the optimum formation of the ketonic products (10) and (12) are suggested. The enones (25) and (26) have been synthesised from 12-hydroxypodocarpa-8,11,13-trien-19-oic acid (1) by sequences involving reduction of the aromatic ring followed by ring C transformations. Methyl 12-hydroxypodocarpa-8,11,13-trien-19-oate (3) has been converted in ca. 60% yield to the dextrorotatory C 13 methyl ether which has then been reduced in good yield to the enone (163). Potential routes for conversion of the enones (25), (26), and (163)into steroidal analogues are described. Initial steps in the transformation of the C 13 methyl ether(62) into an intermediate (176) suitable for the synthesis of (+)-a-onocerin (80) have been investigated. A preliminary study on the synthesis of the C 14 phenol (190) or its methyl ether (191) is also reported. * The numbering system used throughout this thesis is that proposed by J.W. Rowe (personal communication to Professor R. C. Cambie) in "The Common and Systematic Nomenclature of Cyclic Diterpenes", 3rd Revision, Oct. 1966, to be submitted to the IUPAC Commission on Organic Nomenclature (see page 144)
4

Ring C Transformations of Podocarpic Acid

Missen, Alan William January 1971 (has links)
This thesis describes Further studies on the utilisation of the diterpenoid natural product , 12-hydrxypodocarpa-8,11,13-trim 19-oic acid* (podocarpic acid) (1) . In particular it describes transformations of the C-ring to give suitable intermediates for the synthesis of optically active steroids and terpenoids. An investigation has been carried out on the Birch reduction of 12-methoxypodocarpa-8,11,13-trien-19-ol (8), and conditions for the optimum formation of the ketonic products (10) and (12) are suggested. The enones (25) and (26) have been synthesised from 12-hydroxypodocarpa-8,11,13-trien-19-oic acid (1) by sequences involving reduction of the aromatic ring followed by ring C transformations. Methyl 12-hydroxypodocarpa-8,11,13-trien-19-oate (3) has been converted in ca. 60% yield to the dextrorotatory C 13 methyl ether which has then been reduced in good yield to the enone (163). Potential routes for conversion of the enones (25), (26), and (163)into steroidal analogues are described. Initial steps in the transformation of the C 13 methyl ether(62) into an intermediate (176) suitable for the synthesis of (+)-a-onocerin (80) have been investigated. A preliminary study on the synthesis of the C 14 phenol (190) or its methyl ether (191) is also reported. * The numbering system used throughout this thesis is that proposed by J.W. Rowe (personal communication to Professor R. C. Cambie) in "The Common and Systematic Nomenclature of Cyclic Diterpenes", 3rd Revision, Oct. 1966, to be submitted to the IUPAC Commission on Organic Nomenclature (see page 144)
5

Using substrate analogues to probe the mechanisms of two biosynthetic enzymes : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry at Massey University, Turitea, Palmerston North, New Zealand

Pietersma, Amy Lorraine January 2007 (has links)
3-Deoxy-D-arabino-heptulosonate 7-phosphate (DAH7P) synthase and 3-deoxy-Dmanno- octulosonate 8-phosphate synthase (KDO8P) synthase are two enzymes that catalyse very similar reactions. DAH7P synthase is the first enzyme of the shikimate pathway and catalyses the condensation reaction between the four-carbon sugar erythrose 4-phosphate (E4P) 1 and the three-carbon sugar phosphoenolpyruvate (PEP) 2 to give the seven-carbon sugar DAH7P 3. KDO8P synthase catalyses a similar condensation reaction between the five-carbon sugar arabinose 5-phosphate (A5P) 8 and PEP 2 to give the eight-carbon sugar KDO8P 9. Early mechanistic studies have shown the reaction mechanisms of these two enzymes to be very similar and structural and phylogenic analysis has suggested that the two enzymes share a common ancestor. However, there are differences between the two enzymes that have not been explained by the current literature. Whereas all DAH7P synthases require a divalent metal ion for activity, there exists both metallo and non-metallo KDO8P synthases. As well as this, there is the difference in substrate specificity. The natural substrate of KDO8P synthase, A5P, is one carbon longer and has the opposite C2 stereochemistry to E4P, the natural substrate of DAH7P synthase. This study investigates the role of the C2 and C3 hydroxyl groups of E4P and A5P in the enzyme catalysed reactions. The E4P analogues 2-deoxyE4P 38 and 3-deoxyE4P 39 have been synthesised from [beta]-hydroxy-[gamma]-butyrolactone and malic acid respectively. The two analogues were tested as substrates for DAH7P synthase from a variety of organisms, including N. meningitidis, the purification and characterisation of which was carried out during the course of these studies. It was found that both analogues were substrates for DAH7P synthase. 2-DeoxyE4P was found to be the best alternative substrate for DAH7P synthase to date. The analogous study was carried out on KDO8P synthase from N. meningitidis with 2- deoxyR5P 34 and 3-deoxyA5P 40. It was found that removal of the C2 and C3 hydroxyl groups of A5P was much more catastrophic for the KDO8P synthase catalysed reaction. Commercially available 2-deoxyR5P was found to be a very poor substrate, whereas 3-deoxyA5P, which was prepared according to a literature procedure was not a substrate. The difference in substrate specificities of DAH7P synthase and KDO8P synthase is consistent with the hypothesis that despite their similarities, these two related enzymes have different mechanisms. The key step for DAH7P synthase appears to be coordination of the E4P carbonyl to the divalent metal. The metal appears to play a less important role in the KDO8P synthase reaction and the key step is the correct orientation of A5P in the active site.
6

Synthesis of mannosylated peptides as components for synthetic vaccines

Kowalczyk, Renata January 2008 (has links)
The immune system often recognises tumour cells and infectious agents from the unique peptides found on their surfaces therefore, synthetic peptides of similar structure can be used as vaccines to stimulate the immune system. Despite the problems associated with proteolysis and delivery to the immune system, peptide-based vaccines have enormous potential due to their ease of synthesis and purification. The aim of this research was to synthesise ligands for mannose receptors (MRs) that are found on human Antigen Presenting Cells (APCs), for use in synthetic vaccines. Carbohydrate bearing antigens are recognised by MRs which play an important role in binding antigens, migration of dendritic cells (DCs) and interaction of DCs with lymphocytes. Hence, incorporation of a sugar residue into a peptide chain can be used to enhance antigen presentation. This thesis describes the synthesis of fluorescein labelled O-mannosylated peptides using either manual or microwave assisted solid phase glycopeptide synthesis (SPGS) on pre-loaded WANG resin. The mannosylated peptides thus prepared can be tested for their ability to bind mannose receptors on human APCs in vitro. In order to prepare compounds that could be analysed in biological screens, a fluorescent label (5(6)-carboxyfluorescein) was introduced into the glycopeptides via the Nα- or the Nε-amino group of the lysine residue. It was found that preparation of the glycopeptide was more facile when the peptide chain was built onto the Nε of Lys (label into Nα) rather than onto the Nα of Lys (label into Nε). In order to overcome problems experienced when introducing more than one glycosylated building block into the peptide chain, a polyethylene glycol (PEG) linker was employed as a sugar carrier. It was found that mono- and dimannosylated building blocks attached to PEG carrier were incorporated more easily into the peptide chain compared to mono- and dimannosylated serine units. Importantly, microwave technology (CEM Liberty microwave peptide synthesiser) was used for SPGS which resulted in improved purity and yields of the glycopeptides thus prepared with a significant reduction in reaction times. The first fifteen glycopeptides prepared in the present study were tested for binding to mannose receptors. Several compounds have shown improved binding to monocytes (bear MRs) in comparison to lymphocytes (do not bear MRs), in the presence of calcium ions. Calcium dependent binding is specific for C type lectin receptor family that MRs belong to. Five remaining glycopeptides are currently undergoing biological evaluation.
7

Synthesis of mannosylated peptides as components for synthetic vaccines

Kowalczyk, Renata January 2008 (has links)
The immune system often recognises tumour cells and infectious agents from the unique peptides found on their surfaces therefore, synthetic peptides of similar structure can be used as vaccines to stimulate the immune system. Despite the problems associated with proteolysis and delivery to the immune system, peptide-based vaccines have enormous potential due to their ease of synthesis and purification. The aim of this research was to synthesise ligands for mannose receptors (MRs) that are found on human Antigen Presenting Cells (APCs), for use in synthetic vaccines. Carbohydrate bearing antigens are recognised by MRs which play an important role in binding antigens, migration of dendritic cells (DCs) and interaction of DCs with lymphocytes. Hence, incorporation of a sugar residue into a peptide chain can be used to enhance antigen presentation. This thesis describes the synthesis of fluorescein labelled O-mannosylated peptides using either manual or microwave assisted solid phase glycopeptide synthesis (SPGS) on pre-loaded WANG resin. The mannosylated peptides thus prepared can be tested for their ability to bind mannose receptors on human APCs in vitro. In order to prepare compounds that could be analysed in biological screens, a fluorescent label (5(6)-carboxyfluorescein) was introduced into the glycopeptides via the Nα- or the Nε-amino group of the lysine residue. It was found that preparation of the glycopeptide was more facile when the peptide chain was built onto the Nε of Lys (label into Nα) rather than onto the Nα of Lys (label into Nε). In order to overcome problems experienced when introducing more than one glycosylated building block into the peptide chain, a polyethylene glycol (PEG) linker was employed as a sugar carrier. It was found that mono- and dimannosylated building blocks attached to PEG carrier were incorporated more easily into the peptide chain compared to mono- and dimannosylated serine units. Importantly, microwave technology (CEM Liberty microwave peptide synthesiser) was used for SPGS which resulted in improved purity and yields of the glycopeptides thus prepared with a significant reduction in reaction times. The first fifteen glycopeptides prepared in the present study were tested for binding to mannose receptors. Several compounds have shown improved binding to monocytes (bear MRs) in comparison to lymphocytes (do not bear MRs), in the presence of calcium ions. Calcium dependent binding is specific for C type lectin receptor family that MRs belong to. Five remaining glycopeptides are currently undergoing biological evaluation.
8

Synthesis of mannosylated peptides as components for synthetic vaccines

Kowalczyk, Renata January 2008 (has links)
The immune system often recognises tumour cells and infectious agents from the unique peptides found on their surfaces therefore, synthetic peptides of similar structure can be used as vaccines to stimulate the immune system. Despite the problems associated with proteolysis and delivery to the immune system, peptide-based vaccines have enormous potential due to their ease of synthesis and purification. The aim of this research was to synthesise ligands for mannose receptors (MRs) that are found on human Antigen Presenting Cells (APCs), for use in synthetic vaccines. Carbohydrate bearing antigens are recognised by MRs which play an important role in binding antigens, migration of dendritic cells (DCs) and interaction of DCs with lymphocytes. Hence, incorporation of a sugar residue into a peptide chain can be used to enhance antigen presentation. This thesis describes the synthesis of fluorescein labelled O-mannosylated peptides using either manual or microwave assisted solid phase glycopeptide synthesis (SPGS) on pre-loaded WANG resin. The mannosylated peptides thus prepared can be tested for their ability to bind mannose receptors on human APCs in vitro. In order to prepare compounds that could be analysed in biological screens, a fluorescent label (5(6)-carboxyfluorescein) was introduced into the glycopeptides via the Nα- or the Nε-amino group of the lysine residue. It was found that preparation of the glycopeptide was more facile when the peptide chain was built onto the Nε of Lys (label into Nα) rather than onto the Nα of Lys (label into Nε). In order to overcome problems experienced when introducing more than one glycosylated building block into the peptide chain, a polyethylene glycol (PEG) linker was employed as a sugar carrier. It was found that mono- and dimannosylated building blocks attached to PEG carrier were incorporated more easily into the peptide chain compared to mono- and dimannosylated serine units. Importantly, microwave technology (CEM Liberty microwave peptide synthesiser) was used for SPGS which resulted in improved purity and yields of the glycopeptides thus prepared with a significant reduction in reaction times. The first fifteen glycopeptides prepared in the present study were tested for binding to mannose receptors. Several compounds have shown improved binding to monocytes (bear MRs) in comparison to lymphocytes (do not bear MRs), in the presence of calcium ions. Calcium dependent binding is specific for C type lectin receptor family that MRs belong to. Five remaining glycopeptides are currently undergoing biological evaluation.
9

Synthesis of mannosylated peptides as components for synthetic vaccines

Kowalczyk, Renata January 2008 (has links)
The immune system often recognises tumour cells and infectious agents from the unique peptides found on their surfaces therefore, synthetic peptides of similar structure can be used as vaccines to stimulate the immune system. Despite the problems associated with proteolysis and delivery to the immune system, peptide-based vaccines have enormous potential due to their ease of synthesis and purification. The aim of this research was to synthesise ligands for mannose receptors (MRs) that are found on human Antigen Presenting Cells (APCs), for use in synthetic vaccines. Carbohydrate bearing antigens are recognised by MRs which play an important role in binding antigens, migration of dendritic cells (DCs) and interaction of DCs with lymphocytes. Hence, incorporation of a sugar residue into a peptide chain can be used to enhance antigen presentation. This thesis describes the synthesis of fluorescein labelled O-mannosylated peptides using either manual or microwave assisted solid phase glycopeptide synthesis (SPGS) on pre-loaded WANG resin. The mannosylated peptides thus prepared can be tested for their ability to bind mannose receptors on human APCs in vitro. In order to prepare compounds that could be analysed in biological screens, a fluorescent label (5(6)-carboxyfluorescein) was introduced into the glycopeptides via the Nα- or the Nε-amino group of the lysine residue. It was found that preparation of the glycopeptide was more facile when the peptide chain was built onto the Nε of Lys (label into Nα) rather than onto the Nα of Lys (label into Nε). In order to overcome problems experienced when introducing more than one glycosylated building block into the peptide chain, a polyethylene glycol (PEG) linker was employed as a sugar carrier. It was found that mono- and dimannosylated building blocks attached to PEG carrier were incorporated more easily into the peptide chain compared to mono- and dimannosylated serine units. Importantly, microwave technology (CEM Liberty microwave peptide synthesiser) was used for SPGS which resulted in improved purity and yields of the glycopeptides thus prepared with a significant reduction in reaction times. The first fifteen glycopeptides prepared in the present study were tested for binding to mannose receptors. Several compounds have shown improved binding to monocytes (bear MRs) in comparison to lymphocytes (do not bear MRs), in the presence of calcium ions. Calcium dependent binding is specific for C type lectin receptor family that MRs belong to. Five remaining glycopeptides are currently undergoing biological evaluation.
10

Polyoctanediol citrate/sebacate elastomers : a new class of tissue engineering materials

Djordjevic, Ivan January 2009 (has links)
The thesis focuses on elastic polymer material that is biodegradable and compatible with human cells and tissues. The presented research describes polymer synthesis, material processing, physico-chemical investigation and biological tests performed on this novel biomaterial.

Page generated in 0.0904 seconds