• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 198
  • Tagged with
  • 217
  • 217
  • 199
  • 198
  • 198
  • 198
  • 198
  • 57
  • 57
  • 39
  • 39
  • 39
  • 34
  • 31
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

The rectal gland and euryhalinity in elasmobranch fish

Good, Jonathan Unknown Date (has links)
1) Both the partially euryhaline Scyliorhinus canicula and the fully euryhaline Carcharhinus leucas significantly modify plasma concentrations of urea and chloride (Cl-) (and sodium (Na+)) in response to changes in environmental salinity, in order to maintain overall plasma osmolality slightly hyper- or isosmotic to the environment. C. leucas has a greater capacity for urea retention in dilute environments. In S. canicula all of these changes occur within 12 hours of transfer, with the notable exception of increasing plasma urea in response to acute transfer to elevated salinity. 2) A new technique, 51Cr-labelled erythrocytes, was developed to assess blood volume in elasmobranch fish. S. canicula displays significant haemodilution and concentration during chronic acclimation to decreased and increased environmental salinity respectively. Significant changes in blood volume were seen within 6 hours of acute salinity transfer. 3) In vivo secretion rates were measured in the rectal gland of S. canicula during both chronic and acute salinity transfer. Significant changes in Cl- clearance occur during acute transfer, as plasma Na+ and Cl- levels are modified, but do not persist in chronically acclimated animals. This is achieved through modifications in the volume and Cl- concentration of the secretory fluid. 4) C. leucas is able to significantly alter the abundance and/or recruitment of Na+, K+-ATPase in both the rectal gland and the kidney during chronic acclimation to salinity transfer. This is presumably in response to increased requirements for NaCl secretion in SW and osmolyte retention in FW respectively. S. canicula do not significantly alter abundance and/or recruitment of Na+, K+-ATPase in the principle osmoregulatory organs following chronic acclimation to salinity transfer. 5) Chronically SW acclimated C. leucas modify the proportion of ouabain-sensitive oxygen consumption in the tissues of the rectal gland in response to the secretory endocrine stimulus C-type natriuretic peptide (CNP). No such modification occurred in the rectal glands of FW acclimated C. leucas. This represents a change in the sensitivity and response to endocrine control factors during chronic acclimation to salinity transfer in this species. No such modification was seen the in the proportion of ouabain-sensitive oxygen consumption in the rectal glands of chronically acclimated S. canicula in response to CNP. These results were discussed in relation to the capacity for modification of osmoregulatory organs in partially and fully euryhaline elasmobranchs.
162

Reproductive behaviour of Aphidius ervi Haliday (Hymenoptera: Aphidiidae : a thesis presented in partial fulfi[l]ment of the requirements for the degree of Doctor of Philosophy in Plant Science (Entomology) at Massey University, Palmerston North, New Zealand

He, Xiong Zhao January 2008 (has links)
Aphidius ervi Haliday is a cosmopolitan parasitoid species of several major aphid pests on economically important crops. Prior to this research, little information was available on its reproductive behaviour. Emergence of A. ervi peaks during the first few hours of the photophase with males being protandrous. Females become sexually mature earlier than males and oviposit primarily in the photophase. Aphids parasitised in their early instars die before reproduction but those parasitised in later instars produce a limited number of progeny. Females prefer aphids of 3- to 5-d-old over the younger and older aphids for oviposition. Females ovipositing in 4- to 7-d-old aphids have more fitness gains in terms of progeny body size and egg load at emergence. Fertilised eggs are more likely deposited in large hosts and unfertilised eggs in small ones. Large individuals have greater longevity, large males father more progeny, and large females have higher fecundity, parasitism and greater ability in host searching. However, with increasing body size females gain more than males in longevity and fecundity but males gain more than females in the number of female progeny. Males can inseminate up to nine females and they carry about 82% effective sperm at emergence and replenish about 18% sperm during their adult life. Females adjust the oviposition and sex allocation strategies in response to increasing host density with higher number of aphids parasitised at higher host densities and lower proportion of female progeny produced at lower host densities. Males play an active role in mating behaviour. Males having mating experience, and being large or younger, respond to females more quickly and perform better courtships resulting in higher mating success. Males prefer larger and younger females for mating probably because the latter have greater reproductive potential. Males optimize the use of their sperm based on the availability of their sperm and the reproductive status (age) of females. The switchingoff of female receptivity of male mating attempt after the mating is a gradual process. Some females accept the second males within 1 minute since the termination of the first mating. The shorter mating period in the second mating suggests that females remate probably due to the gradual process of switching-off of female receptivity rather than the insufficient sperm transformation during the first mating. Males prolong their mating duration in male-biased operational sex ratio to reduce the probability of female remating.
163

Reproductive behaviour of Aphidius ervi Haliday (Hymenoptera: Aphidiidae : a thesis presented in partial fulfi[l]ment of the requirements for the degree of Doctor of Philosophy in Plant Science (Entomology) at Massey University, Palmerston North, New Zealand

He, Xiong Zhao January 2008 (has links)
Aphidius ervi Haliday is a cosmopolitan parasitoid species of several major aphid pests on economically important crops. Prior to this research, little information was available on its reproductive behaviour. Emergence of A. ervi peaks during the first few hours of the photophase with males being protandrous. Females become sexually mature earlier than males and oviposit primarily in the photophase. Aphids parasitised in their early instars die before reproduction but those parasitised in later instars produce a limited number of progeny. Females prefer aphids of 3- to 5-d-old over the younger and older aphids for oviposition. Females ovipositing in 4- to 7-d-old aphids have more fitness gains in terms of progeny body size and egg load at emergence. Fertilised eggs are more likely deposited in large hosts and unfertilised eggs in small ones. Large individuals have greater longevity, large males father more progeny, and large females have higher fecundity, parasitism and greater ability in host searching. However, with increasing body size females gain more than males in longevity and fecundity but males gain more than females in the number of female progeny. Males can inseminate up to nine females and they carry about 82% effective sperm at emergence and replenish about 18% sperm during their adult life. Females adjust the oviposition and sex allocation strategies in response to increasing host density with higher number of aphids parasitised at higher host densities and lower proportion of female progeny produced at lower host densities. Males play an active role in mating behaviour. Males having mating experience, and being large or younger, respond to females more quickly and perform better courtships resulting in higher mating success. Males prefer larger and younger females for mating probably because the latter have greater reproductive potential. Males optimize the use of their sperm based on the availability of their sperm and the reproductive status (age) of females. The switchingoff of female receptivity of male mating attempt after the mating is a gradual process. Some females accept the second males within 1 minute since the termination of the first mating. The shorter mating period in the second mating suggests that females remate probably due to the gradual process of switching-off of female receptivity rather than the insufficient sperm transformation during the first mating. Males prolong their mating duration in male-biased operational sex ratio to reduce the probability of female remating.
164

Wellington geckos meet Wairarapa geckos : hybridisation between two genetically and morphologically distinct populations of the New Zealand common gecko complex (Hoplodactylus maculatus) : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Science in Zoology at Massey University, Palmerston North, New Zealand

Fitness, Josephine January 2010 (has links)
The purpose of this study was to use molecular techniques and morphological measurements to set out to find whether a hybrid zone exists between two coastal populations of the common gecko (Hoplodactylus maculatus), on the Wellington south coast. I collected geckos from five sites in a coastal transect from the population of small geckos to the large geckos. Using four genetic loci, one mitochondrial (16S) and three nuclear (Rag-1, Rag-2, C-mos), I was able to determine that the coastal populations do have geneflow, however each population maintains some unique alleles. Morphological evidence reveals a significant difference in gecko sizes from Turakirae Head and those caught at Ocean Beach, separated by just 15 km. Adult geckos at Turakirae Head are on average 10mm smaller (snout-to-vent) than adult geckos at Ocean Beach, representing almost a doubling in average weight. The centre of the steep frequency clines of four characters is coincident and the widths are concordant. The narrower morphological clines indicate stronger selection on the size of the gecko, than on genetic loci.
165

The prevalence of Salmonella and the spatial distribution of its serovars amongst New Zealand's native lizards : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Zoology at Massey University, Palmerston North, New Zealand

Middleton, Danielle Mary Rose Lea January 2008 (has links)
This thesis considers the prevalence and spatial distribution of Salmonella serovars amongst wild endemic lizards on offshore islands around the coast of New Zealand. The mean test prevalence of faecal excretion of Salmonella was 4.7%. Skinks (Scincidae) were more likely (8.5%) to be carriers of Salmonella than geckos (1.6%). Each island was host to between one and three Salmonella serovars that were not found on any other islands in this study. Two exceptions were Salmonella Bousso and Salmonella Mana which were found on two islands within the same geographical area. Based on the findings of this study, different islands are likely to be hosts to different Salmonella serovars which could have implications for future translocations of native lizards. I also assessed the prevalence and spatial distribution of faecal excretion of Salmonella, Aeromonas and Hafnia alvei within Mana Island. The prevalence of Salmonella on Mana Island was estimated at 5.8%. Salmonella was found predominantly in skinks (10.0%) and less often in geckos (4.1%). H. alvei was found at a prevalence of 1.9%. No Aeromonas species were cultured from any of the cloacal swabs, suggesting that the 95% confidence interval for the true prevalence is 0-3%. Each site sampled in this study was host to one or more unique serovar of Salmonella not found at any of the other sites. The results of this study indicate that Salmonella serovars may become established within populations of lizards and is not spread between them. This may be due to a lack of dispersal of lizards between sites, raising important considerations for the translocation of native lizards. I investigated the prevalence of faecal excretion of Salmonella, H. alvei and Aeromonas by New Zealand native lizards from two captive populations. The mean prevalence of faecal excretion of Salmonella in the captive lizards sampled was 11.5%. There was a higher prevalence of Salmonella within captive population A (22.0%) than in population B (3.6%). No Aeromonas was cultured from any of the lizards. H. alvei was found at a prevalence of 5.2%. The prevalence of Salmonella and H. alvei was significantly higher in captive lizards than in wild populations. Captive lizards may, therefore, not be appropriate founders for new populations of wild lizards. Finally I assessed the different efficiencies of two media and two temperatures in isolating six Salmonella serovars from a reptilian source. All serovars grew equally well at 37°C and 27°C. For most serovars XLD agar was the more successful media than MacConkey agar but the success of different culture media depended on the serovar being cultured. Because lizards are frequently host to a wide range of Salmonella serovars, screening samples using multiple microbiological methods is likely to give the best chance of isolating all Salmonella serovars present.
166

Feeding behaviour on the European hedgehog (Erinaceus europaeus L.) in a New Zealand pasture

Campbell, Patricia Ann January 1973 (has links)
The feeding behaviour of the European hedgehog (Erinaceus europaeus L.) has been investigated in a pastoral environment. Sampling methods that caused the minimum interference to the natural population were used. The relative importance of the various prey species in the diet were analysed by occurrence, relative volume and direct counting techniques. Problems often associated with the use of direct counting were successfully overcome. It was established that the main animal food items in the hedgehog diet were earwigs, lepidopteran larvae, beetles, harvestmen, dung flies, slugs, and earthworms. Small quantities of a large number of other species were also consumed. Several variations in the diet were found to be related to changes in the availability of food species. Although hedgehogs are capable of consuming large numbers of grass grub beetles (Costelytra zealandica) during the flight season it is concluded that they are unlikely to provide any effective measure of biological control of this pasture pest. Hedeghog diet was not influenced significantly by the sex of the animal, or by pasture irrigation. It was demonstrated that the feeding rhythm of captive animals, fed under laboratory conditions, was similar to that observed in the field. Observation showed that hedgehogs were active for an average of eight hours per night, with a period of maximum activity between 9 p.m. and 11 p.m. Animals tended to follow relatively fixed routes on successive nights. Excluding nestlings, the population density in an irrigated clover-ryegrass pasture was found to vary from four (winter) to eight (summer) animals per hectare. The average minimum feeding range of these animals was 2.4 hectares, although their feeding ranges overlapped considerably.
167

Characterisation of limb development and locomotion in the brown kiwi (Apteryx mantelli) : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Zoology at Massey University, Palmerston North, New Zealand

Jones, Erica Anne January 2010 (has links)
This thesis covers broad topics concerning limb growth and development and their effects on locomotion in the brown kiwi (Apteryx mantelli). I begin by describing the morphological features of a collection of unknown-age wild kiwi embryos from early development to point of hatch. Using these features, I assign developmental stages to each embryo and compare the progress of development to the same-staged ostrich and chicken embryos. Measurements of the hindlimb, bill and crown-rump length are used to develop an aging scheme based on comparisons with the ostrich and the chicken. The ostrich model and chicken model create age predictions for the unknown aged kiwi embryos. One kiwi embryo was of known age and both models gave identical predictions for this marker embryo, but gave differing predictions for all other kiwi embryos. Using captive-reared kiwi chicks, I characterise hindlimb, bill and bodyweight growth from the time of hatch to 3 months of age. Growth patterns are very linear within this time period for all measurements but bodyweight. Female kiwi hatch with longer bills than males, but the growth of both sexes converges by the end of the 3-month period. Growth of bodyweight in the males slows earlier than in females. Bodyweight and bill length were then compared to a wild population of kiwi. Captive-reared chicks were found to hatch with shorter bills than the wild birds and to increase in bodyweight at a faster rate than wild birds. Rapid weight gain has been implicated in developmental limb deformities in other precocial and long-legged birds and has the potential to produce similar results in captive kiwi. I further studied the movement of the hindlimb during locomotion in two adults and one juvenile kiwi by filming them while they were walking on a treadmill. Kinematic parameters were measured from the video recordings and compared to overground parameters from another study. Similarity between the treadmill and overground locomotor parameters validates the use of a treadmill in studying kiwi locomotion. None of the birds achieved the theoretical transition from a walk to a run at a duty factor of 0.5. After normalising for size, the juvenile showed a longer stride length and lower stride frequency with increasing speed than the adults. Lateral head oscillations were observed during the stride cycle, which I propose having a sensory function as well as a biomechanical one.
168

A study of home ranges, movements, diet and habitat use of kereru (Hemiphaga novaeseelandiae) in the southeastern sector of Banks Peninsula, New Zealand

Campbell, Kirsten L. January 2006 (has links)
The present study is part of the Kaupapa Kereru Programme. The main aim of the programme is to increase the numbers and range of kereru (Hemiphaga novaeseelandiae) on Banks Peninsula. Home ranges, movements, diet and habitat use of 15 kereru captured in Hinewai Reserve, Banks Peninsula, were investigated from February 2005 to February 2006. Hinewai Reserve is the largest tract of regenerating native forest in a highly modified urban-rural landscape. Phenology of 11 plant species predicted to be key kereru foods, was studied to determine the pattern of food availability in Hinewai Reserve. Twelve radio-tagged kereru resided in the Hinewai Reserve study site (Otanerito Valley and Sleepy Bay) and three resided in Akaroa. Ripe fruit was available from January to August; the height of the fruiting season was in autumn. The bulk of new leaf growth occurred in spring and early summer although new leaves were available on broom and tree lucerne year round. Peak flowering occurred in spring. Kereru in Akaroa ate a total of 21 plant species; six of these species were native and 15 introduced. Kereru in the Hinewai Reserve study site ate a total of 26 plant species; 20 of these species were native and six introduced. Fruit was preferred when readily available. Native fruit appeared to be preferred over fruit of introduced species in Akaroa, where both types were available. New foliage of introduced legumes and deciduous species appeared to be preferred over new foliage of native species at both sites during winter and spring. These species were important food sources prior to the breeding season and may be selected specifically for their nitrogen and protein content. Food is currently not a limiting factor for kereru survival or reproductive success. Considerable variation in the use and preference of vegetation types of individual kereru made it difficult to identify trends in habitat selection. Use and preference for many vegetation types was seasonal; this was certainly because of the availability of food species included in or close to these vegetation types. Overall, native vegetation communities were used more than communities dominated by introduced species and forest communities were used more than non-forest communities. Kanuka (Kunzea ericoides) was used most often for non-feeding activities and 67% of observed nests were built in kanuka. Annual home ranges and core areas in the Hinewai Reserve study site (mean of 15.9 and 2 ha respectively) were significantly larger than those found in Lyttelton Harbour, Banks Peninsula in previous research (mean of 8 and 0.08 ha respectively). Home ranges were larger when fruit was eaten, than when no fruit was eaten indicating that kereru are more sedentary when feeding on foliage. Kereru from the Hinewai Reserve study site made no excursions >5 km and no daily movements >2 km. Kereru from Akaroa and Sleepy Bay travelled into Otanerito Valley to feed on horopito in autumn, indicating that there may have been a lack of fruit in their local areas during autumn. No kereru in Otanerito Valley travelled outside of the valley. The distribution of high quality food sources is likely to have caused the observed differences in home range and core area size between localities. Kereru in Lyttelton Harbour may have been restricted to small patches of high quality resources in a study area consisting largely of unsuitable habitat. In Hinewai Reserve, high quality resources were spread over larger areas and were more uniformly distributed. The density of kereru was unknown at both study sites, and this confounded assessment of habitat quality. However, it is likely that the Hinewai Reserve study site would support a higher number of kereru. The main factor limiting population growth in the present study was failure of nests at the egg and chick stage. The fledge rate was 17%. Two of fifteen adult kereru died. Control of predators should be the first aspect of management that is focused on, and will almost certainly increase reproductive success of kereru and loss of breeding adults. As the population of kereru on Banks Peninsula increases due to predator control in existing kereru habitat, food may become a limiting factor. Habitat can be improved for kereru by planting a diverse range of plant species that provide food year-round. Native fruiting species are greatly recommended for habitat enhancement and should be selected so that fruit is available for as much of the year as possible. Native and introduced legumes should also be made available as foods for winter and spring. As most land on Banks Peninsula is privately owned, co-operation and enthusiasm of the community is critical for successful management. Information and support needs to be given to landowners wishing to enhance their properties for kereru.
169

Cooperative breeding in the skuas of the Chatham Islands

Hemmings, Alan Dudley January 1995 (has links)
Cooperative breeding, widely reported in birds, is found in <1–5% of territories in some populations of the Brown skua, Catharacta lonnbergi. In the New Zealand region, up to 30-50% of skua territories may be occupied by trios or larger groups. This study examines its occurrence at the Chatham Islands, east of New Zealand. Here 16% of territories are occupied by trios and 2% by groups. All members of skua trios and groups participate in sexual and other breeding activity, and the associations arc thus communal. Sexual discrimination of breeding birds by morphometric measurements shows that all communal groups known since 1978-79 have been polyandrous. These groups are long-lived associations, some of which are known to have persisted for at least 14 years. Trios are as long-lived and stable as pairs, and birds on communal territories do not move from them even when an appropriate-sex space becomes available on an adjacent pair territory. The members of trios are not close kin. All members of communal associations participate in territorial defence and chick rearing. In trios, the males appear to be equals, although in any one year the actual paternity of offspring may reside with only one of them. Overall reproductive success for Chatham Island skuas is high, for both pairs and communal groups, compared with other populations. However, communal trios and groups have lower reproductive success than pairs even over a l0 year period, particularly when considered on a per adult basis. Furthermore, no improvement in chick ‘quality’ is discernible. Unusually for skuas, the breeding population at the Chatham Islands is non-migratory. Skuas are present on their breeding territories during the winter, and exhibit characteristic territorial and agonistic behaviours, albeit at lower intensity than during the breeding season. It is suggested that communal breeding in this skua population is not adaptive per se, but a secondary consequence of year-round residence. This is a departure from the conventional resolution of communal breeding. Residence is facilitated by benign climatic conditions and year-round prey availability. When territory space becomes available outside the breeding season, in a small number of cases more than a pair of skuas are able to establish themselves. Thereafter, trios and larger groups persist and behave in the same manner as pairs. The flux between trios and pairs when birds are lost is determined, in part, by the sex of that bird. Thus a trio which loses its one female will ‘acquire’ a replacement female and persist as a trio, whereas a trio which loses one of its two males will thereafter continue as a pair. Keywords: Cooperative breeding, communal breeding, polyandry, Stercorariidae, skuas, skua trios, skua behaviour, skua breeding, Chatham Islands / Chapter 1 previously published as: Cooperative breeding in the Skuas (Stercorariidae): History, distribution and incidence. Journal of the Royal Society of New Zealand 24: 245-260 (1994). Publisher version available at http://www.royalsociety.org.nz/Site/publish/Journals/jrsnz/1994/default.aspx / Chapter 2 previously published as: Winter territory occupation and behaviour of Skuas at the Chatham Islands, New Zealand. Emu 90: 108-113 (1990). Publisher version available at http://www.publish.csiro.au/nid/96.htm / Chapter 3 previously published as: Communually breeding Skuas: Breeding success of pairs, trios and groups of Catharacta lonnbergi on the Chatham Islands, New Zealand. Journal of Zoology, London 218: 393-405 (1989). The definitive version is available at www.blackwell-synergy.com
170

Population dynamics of juvenile snapper (Pagrus auratus) in the Hauraki Gulf

Francis, Malcolm, 1954- January 1992 (has links)
The population dynamics of juvenile snapper, Pagrus auratus, were investigated in the Hauraki Gulf, north-eastern New Zealand, between 1982 and 1990. Attention focused on age and growth, temporal and spatial variation in abundance, and recruitment. Daily increment formation was validated in the sagittae of snapper up to about 160 days old. Increment width varied with time of year, and snapper age, and increments were not resolvable with a light microscope during winter. Increment counts inside a prominent metamorphic mark showed that larval duration was 18-32 days, and was inversely related to water temperature. Spawning dates were back-calculated from increment counts in settled juveniles, and ranged from September to March with a peak in November-January. The onset of spawning was temperature dependent. Fast-growing snapper had smaller sagittae than slow-growing snapper, indicating an uncoupling of otolith and somatic growth. Snapper gonads differentiated first as ovaries during the second year of life, and then some juveniles changed sex to become males during their third year. Sex change occurred before maturity, so snapper are functionally gonochoristic. Growth was slow during the larval phase, but increased rapidly after metamorphosis to about 0.6-0.9 mm.day-1. From the first winter, growth followed a well-defined annual cycle, with little or no growth during winter, and linear growth of 0.16-0.43 mm.day-1 during spring-autumn for 0+/1+ and 1+/2+ snapper. Snapper grew faster at higher temperatures. Trawl catch rates were affected by numerous gear and environmental factors, but probably provided reasonable estimates of snapper relative abundance. Recommendations are made for improving snapper trawl survey procedures. There was a strong annual abundance cycle in the Kawau region, peaking in spring, and declining to a minimum in winter. Snapper were patchily distributed at a spatial scale of 1-2 km, probably because of preference for specific micro-habitats. Year class strength of 1+ snapper varied 17-fold over seven years, and was strongly positively correlated with autumn sea surface temperature during the 0+ year. The strengths of the 1991 and 1992 year classes are predicted to be below average, and extremely weak, respectively.

Page generated in 0.2658 seconds