• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • Tagged with
  • 22
  • 22
  • 22
  • 18
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 8
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predictive vegetation mapping of forest overstorey species using terrain

Butler, D. Unknown Date (has links)
No description available.
2

Predictive vegetation mapping of forest overstorey species using terrain

Butler, D. Unknown Date (has links)
No description available.
3

Predictive vegetation mapping of forest overstorey species using terrain

Butler, D. Unknown Date (has links)
No description available.
4

Development and Ecology of Lignotuberous Seedlings in Mixed Species Dry Sclerophyll Forests in South Eastern Queensland

Buckmaster, J. Unknown Date (has links)
No description available.
5

Ecology of parasitic and micropredatory isopods on coral reefs

Jones, Conor McNamara Unknown Date (has links)
Arthropod parasites and micropredators, such as ticks and mosquitoes, influence terrestrial ecosystems and harm their hosts directly and indirectly by vectoring micro-organisms. Whether micropredators similarly affect marine ecosystems and hosts is not well understood. In coral reef fish communities, the most abundant micropredators are isopods, in particular, gnathiids. Our understanding of how isopods affect fishes has been restricted by a lack of information regarding basic isopod biology including; patterns of abundance, parasite identity, host specificity and host pathology. Also it is unknown if small juvenile fish are parasitised by isopods, and if this affects their survival. Sequentially, the aims of my PhD thesis were to understand the ecology of several lesser known parasites in sufficient detail to perform manipulative experiments that could test the effects of micropredation on small juvenile reef fish. All field studies took place at Lizard Island, Great Barrier Reef My first study aimed to describe temporal and spatial patterns of isopod abundance by measuring emergence rates. Gnathiid isopod juveniles emerge from the benthos into the water column to find hosts or change locations. Although diel patterns have been demonstrated, the relationship between substrate and emergence on coral reefs is not clear. I measured emergence rates of parasitic isopods (Gnathiidea and Flabellifera) in 6 “habitats” at 2 very different sites at Lizard Island. Isopods were collected from the periphery and centres of 3 sizes of reef, and from the substrate between these reefs (sand or rubble). At both sites, the most abundant gnathiid species (Gnathia falcipenis and Gnathia sp C), was exclusive to that site. Although strong diel patterns in emergence were observed, gnathiid abundance could not be predicted by habitat. However, gnathiids were larger and more often fed over reef borders than in the centres of reefs. To explain these patterns, I suggested that first stage larvae had the largest influence on total abundance and were patchily distributed in accordance with adults from which they had recently hatched. As later stage larvae also depend on fish, more successful (fed and older larvae) are found on the edges of reefs where appropriate hosts may be more abundant. Gnathiids were over-dispersed in all habitats investigated, including apparently homogeneous beds of coral rubble and sand. This indicated that gnathiid distribution may be better predicted by very fine scale differences in substrate, or that larvae are simply gregarious, and that abundance may be difficult to predict on the basis of substrate. Without reliable differences in parasite abundance among habitats at Lizard Island, subsequent studies would rely on manipulating parasite abundance via excluding wild parasites in the field (which proved very difficult) or by controlling abundance in laboratory simulations. I then investigated host specificity in the 2 most abundant gnathiid species from the previous study. Discrete species distributions between the two sites suggested that the 2 parasites may have had different diets. Host-specificity data for gnathiid isopods are scarce because the parasitic juvenile stages are difficult to identify and host-parasite contact is often brief. Engorged third stage gnathiids were photographed and permitted to moult into adults to allow identification. I compared mtDNA sequences from their blood meals to host sequences available on GenBank. The host frequency distributions used by each species were significantly different; only four host families were shared. I concluded that G. falcipenis and Gnathia sp C operate as preferential feeders. Importantly, this work showed that G. falcipenis was indeed a natural parasite of several species of damselfish (Pomacentridae) that could be collected as young recruits and used in manipulative experiments. I then used G. falcipenis as a model parasite to investigate the effects of isopods on recently recruited Dischistodus perspicillatus and small juvenile Acanthochromis polyacanthus damselfishes. Working with honours student Ms Rose Penfold, we determined that A. polyacanthus was infected by gnathiids in the wild at sizes as small as 4.2 mm SL. Laboratory infections revealed that larger A. polyacanthus were much better at eating gnathiids, a behaviour which prevented infection, and that smaller fish were more likely to die post-infection. Infection prevalence was > 3 % during the day, but we could not sample fish for nocturnal infection prevalence. A caging experiment suggested that most micropredation on damselfish took place at night. For D. perspicillatus, I found that exposure to 2 parasites each evening for 7 nights after settlement halved the growth of these fish. Lastly, numerous free-swimming cymothoid isopods were found associated with larval fish in light traps. Cymothoids have a multi-morphic life cycle composed of micropredatory stages that eventually become females, which are permanently attached to fishes. Because cymothoid taxonomy is based around female morphology, natatory-stage cymothoids can not be identified. I sequenced mtDNA from natatory and adult female life history stages and matched 4 of 11 natatory cymothoid morphotypes. Molecular data were also used to produce a phylogeny exploring the evolution of different forms of host attachment within the Cymothoidae. This phylogeny suggests that external attachment, formerly thought to be plesiomorphic, is a derived condition and has evolved several times independently. I suggest that attachment to the buccal cavity or gills is a primitive form of attachment. This research has provided information on emergence patterns and hostspecificity which is necessary for the future study of isopod vector biology. It also provides a platform for future taxonomic and phylogenetic studies on cymothoids. I demonstrate that gnathiids infect juvenile coral reef fish and suggest that they may influence survival both directly and indirectly by reducing growth and predisposing infected fish to size-selective mortality. Thus, interactions between isopod micropredators and recruiting fishes may determine the survivorship of individual fish and influence the subsequent community structure.
6

Ecology of parasitic and micropredatory isopods on coral reefs

Jones, Conor McNamara Unknown Date (has links)
Arthropod parasites and micropredators, such as ticks and mosquitoes, influence terrestrial ecosystems and harm their hosts directly and indirectly by vectoring micro-organisms. Whether micropredators similarly affect marine ecosystems and hosts is not well understood. In coral reef fish communities, the most abundant micropredators are isopods, in particular, gnathiids. Our understanding of how isopods affect fishes has been restricted by a lack of information regarding basic isopod biology including; patterns of abundance, parasite identity, host specificity and host pathology. Also it is unknown if small juvenile fish are parasitised by isopods, and if this affects their survival. Sequentially, the aims of my PhD thesis were to understand the ecology of several lesser known parasites in sufficient detail to perform manipulative experiments that could test the effects of micropredation on small juvenile reef fish. All field studies took place at Lizard Island, Great Barrier Reef My first study aimed to describe temporal and spatial patterns of isopod abundance by measuring emergence rates. Gnathiid isopod juveniles emerge from the benthos into the water column to find hosts or change locations. Although diel patterns have been demonstrated, the relationship between substrate and emergence on coral reefs is not clear. I measured emergence rates of parasitic isopods (Gnathiidea and Flabellifera) in 6 “habitats” at 2 very different sites at Lizard Island. Isopods were collected from the periphery and centres of 3 sizes of reef, and from the substrate between these reefs (sand or rubble). At both sites, the most abundant gnathiid species (Gnathia falcipenis and Gnathia sp C), was exclusive to that site. Although strong diel patterns in emergence were observed, gnathiid abundance could not be predicted by habitat. However, gnathiids were larger and more often fed over reef borders than in the centres of reefs. To explain these patterns, I suggested that first stage larvae had the largest influence on total abundance and were patchily distributed in accordance with adults from which they had recently hatched. As later stage larvae also depend on fish, more successful (fed and older larvae) are found on the edges of reefs where appropriate hosts may be more abundant. Gnathiids were over-dispersed in all habitats investigated, including apparently homogeneous beds of coral rubble and sand. This indicated that gnathiid distribution may be better predicted by very fine scale differences in substrate, or that larvae are simply gregarious, and that abundance may be difficult to predict on the basis of substrate. Without reliable differences in parasite abundance among habitats at Lizard Island, subsequent studies would rely on manipulating parasite abundance via excluding wild parasites in the field (which proved very difficult) or by controlling abundance in laboratory simulations. I then investigated host specificity in the 2 most abundant gnathiid species from the previous study. Discrete species distributions between the two sites suggested that the 2 parasites may have had different diets. Host-specificity data for gnathiid isopods are scarce because the parasitic juvenile stages are difficult to identify and host-parasite contact is often brief. Engorged third stage gnathiids were photographed and permitted to moult into adults to allow identification. I compared mtDNA sequences from their blood meals to host sequences available on GenBank. The host frequency distributions used by each species were significantly different; only four host families were shared. I concluded that G. falcipenis and Gnathia sp C operate as preferential feeders. Importantly, this work showed that G. falcipenis was indeed a natural parasite of several species of damselfish (Pomacentridae) that could be collected as young recruits and used in manipulative experiments. I then used G. falcipenis as a model parasite to investigate the effects of isopods on recently recruited Dischistodus perspicillatus and small juvenile Acanthochromis polyacanthus damselfishes. Working with honours student Ms Rose Penfold, we determined that A. polyacanthus was infected by gnathiids in the wild at sizes as small as 4.2 mm SL. Laboratory infections revealed that larger A. polyacanthus were much better at eating gnathiids, a behaviour which prevented infection, and that smaller fish were more likely to die post-infection. Infection prevalence was > 3 % during the day, but we could not sample fish for nocturnal infection prevalence. A caging experiment suggested that most micropredation on damselfish took place at night. For D. perspicillatus, I found that exposure to 2 parasites each evening for 7 nights after settlement halved the growth of these fish. Lastly, numerous free-swimming cymothoid isopods were found associated with larval fish in light traps. Cymothoids have a multi-morphic life cycle composed of micropredatory stages that eventually become females, which are permanently attached to fishes. Because cymothoid taxonomy is based around female morphology, natatory-stage cymothoids can not be identified. I sequenced mtDNA from natatory and adult female life history stages and matched 4 of 11 natatory cymothoid morphotypes. Molecular data were also used to produce a phylogeny exploring the evolution of different forms of host attachment within the Cymothoidae. This phylogeny suggests that external attachment, formerly thought to be plesiomorphic, is a derived condition and has evolved several times independently. I suggest that attachment to the buccal cavity or gills is a primitive form of attachment. This research has provided information on emergence patterns and hostspecificity which is necessary for the future study of isopod vector biology. It also provides a platform for future taxonomic and phylogenetic studies on cymothoids. I demonstrate that gnathiids infect juvenile coral reef fish and suggest that they may influence survival both directly and indirectly by reducing growth and predisposing infected fish to size-selective mortality. Thus, interactions between isopod micropredators and recruiting fishes may determine the survivorship of individual fish and influence the subsequent community structure.
7

An ecological study of the lizard fauna of Kaitorete Spit, Canterbury

Freeman, Alastair B. January 1994 (has links)
Baited pitfall traps were used to sample the lizard fauna at Birdlings Flat on Kaitorete Spit, Canterbury. Four species had been recorded previously from this area; Leiolopisma maccanni Patterson and Daugherty, Leiolopisma nigriplantare polychroma Patterson and Daugherty, Leiolopisma lineoocellatum (Dumeril and Dumeril) and Hoplodactylus maculatus (Gray). Three of these species (L. maccanni, L. n. polychroma and H. maculatus) were captured during the course of the study. The aim of this present study was to examine the nature of the ecological relationship among these three species at Birdlings Flat. Capture data indicated that L. maccanni was almost entirely confined to the dunelands while L. n. polychroma was associated exclusively with shrublands on old dune ridges behind the sand dunes. H. maculatus' distribution encompassed both of these major habitats. Separation on the basis of habitat was thought to be the most important niche variable for these two diurnal skinks. There was some temporal separation in activity of these two species, with L. maccanni active earlier in the day than L. n. polychroma. However, there was a high degree of overlap in the activity periods of these two species. Temporal differentiation between the nocturnal gecko H. maculatus and the two diurnal skinks is thought to be an important means by which these species coexist. The most common prey items consumed by all three species were Diptera, Araneae, C. propinqua seeds, Hemiptera, unidentified arthropod eggs, Coleoptera and Hymenoptera. Dietary differences between the two skink species were apparent although these differences appeared to be related to the preferred habitats of the respective species. Density estimates for L. maccanni varied between 1050/ha and 1850/ha while L. n. polychroma density varied between 200/ha and 400/ha. The density of H. maculatus was not calculated but appeared to be intermediate to the density of the two skink species. The apparent disappearance of L. lineoocellatum from an area where they were once relatively common is cause for concern. There is no obvious reason for this decline although it may be related to the combined impacts of predation, collection and habitat disturbance.
8

Effect of season and fire on the soil seed bank on North Stradbroke Island: implications for post-mining rehabilitation

Corbett, M. H. Unknown Date (has links)
No description available.
9

The effects of honeybees on the biodiversity of manuka patches : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Ecology, Massey University, Palmerston North, New Zealand

Bennik, Rebecca Marie January 2009 (has links)
Honeybees (Apis mellifera) are important pollinators of many plant species and are employed globally for crop and honey production. However, little is known about the effects of this species on native pollinator and plant species in areas to which they have been introduced; and previous research has not been able to reach a general consensus as to the type of impact honeybees have on pollination systems. In addition to the effects of exotic pollinators, the loss and fragmentation of natural habitats is also of major concern to the continuing diversity of pollinators and plant populations. Here, the impact of honeybee density on other pollinator guilds, and levels of remaining pollen and nectar standing crop among 18 patches of the New Zealand native shrub – manuka (Leptospermum scoparium) is examined at three different regions within the North Island. The same sites were also used to test the reproductive capabilities of manuka and subsequent pollen limitation among patches. A further 11 sites were utilised to examine biodiversity via intercept and pitfall traps within manuka patches, and the patch variables driving taxa composition. Large fly (Diptera = 5 mm) abundance was negatively correlated with honeybee abundance and instances of physical disturbance of large flies by honeybees were observed. There was no significant correlation between honeybee abundance and other pollinator guilds. Nectar was a limiting resource for both honeybees and large flies, whereas, pollen was not a limiting resource among any of the major pollinating insect guilds. Pollination treatments revealed that manuka is partially self-compatible, but relies more heavily on cross pollination for higher yields of capsule and seed set. Pollen limitation did not occur significantly at any of the sites. A total of 159 Coleoptera, 125 Diptera, 131 Hymenoptera morphospecies, and 50 other groups of taxa from various orders were collected among sites. Invertebrate richness was higher at lower altitudes and litter invertebrate richness was significantly higher with an increase in the proportion of manuka cover. There were distinct differences in taxa composition between the three regions, with plant community composition and altitude the most significant factors. Patch size also played a part, but a lack of overall variation in patch sizes may understate the effect this has on insect composition. Overall, honeybees are competing for nectar resources and displacing large flies as a consequence; however, capsule and seed set among manuka patches did not significantly suffer as a consequence. Regional variation in patch characteristics such as altitude, plant community composition, patch size, proportion manuka cover, and plant evenness appear to be influencing insect composition found within manuka patches to varying degrees. Further investigation into the impact of patch size and patch connectivity is also warranted.
10

Evolutionary interactions of brood parasites and their hosts : recognition, communication and breeding biology : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Ecology at Massey University, Auckland, New Zealand

Anderson, Michael Gareth January 2009 (has links)
Obligate brood parasites lay their eggs in nests of other species, relying on these host parents to care for their offspring. This phenomenon has been a curiosity amongst researchers since its first description and has become a model study system for testing such ideas as coevolution and species recognition. This thesis examines a few of the many questions that arise from this breeding system. The New Zealand Grey Warbler (Gerygone igata) and its brood parasite, the Shining Cuckoo (Chrysococcyx lucidus) are used as the main study species, although research on the eviction behaviour of Common Cuckoos (Cuculus canorus) has also been conducted. First, the current state of knowledge and recent discoveries regarding nestling rejection abilities of hosts is reviewed in chapter one. Second, a comparative study of New Zealand passerine begging calls has been conducted to test for begging call similarity between a brood parasite and its host, as well as developing a new technique for detecting the mode of coevolution that may be occurring in the parasite – host relationship. Parent-offspring communication in Grey Warblers is also examined to test for both parental and nestlings Parents use both alarm calls to warn offspring of potential danger, and also parental feeding calls to elicit a begging response from nestlings. By contrast, nestlings are able to signal both age and short term levels of need to parents through the acoustic structure of the begging call. The evolutionary costs and benefits of egg eviction behaviour in the Common Cuckoo are also tested. An experimental approach showed that egg eviction had a growth cost, but this cost was temporary and restricted to during and immediately after the egg eviction phase. A pattern of compensatory growth was observed after the eviction period, so that during the later nestling stages there was no difference in mass, and no difference in fledging age. Finally, variation in the Grey Warbler breeding biology and Shining Cuckoo parasitism rates are examined through both time and across latitudes. This research has shown a counterintuitive pattern of breeding phenology across latitudes. These patterns have implications for Shining Cuckoos both in terms of timing of available nests and host selection. Keywords: Begging call, breeding phenology, brood parasitism, coevolution, Common Cuckoo, eviction, Grey Warbler, parent-offspring communication, Shining Cuckoo.

Page generated in 0.0823 seconds