Spelling suggestions: "subject:"280303 programming languages"" "subject:"280303 programming ianguages""
1 |
Usability evaluation of grammar formalisms for free wold order natural language processingPedersen, M. Unknown Date (has links)
No description available.
|
2 |
Enabling meta level support for language design and implementation through modular parsersPeake, I. Unknown Date (has links)
No description available.
|
3 |
Genesis: An Extensible JavaLewis, IJ Unknown Date (has links) (PDF)
Extensible programming languages allow users to create fundamentally new syntax and translate this syntax into language primitives. The concept of compile-time meta-programming has been around for decades, but systems that provide such abilities generally disallow the creation of new syntactic forms, or have heavy restrictions on how, or where, this may be done. Genesis is an extension to Java that supports compile-time meta-programming by allowing users to create their own arbitrary syntax. This is achieved through macros that operate on a mix of both concrete and abstract syntax, and produce abstract syntax. Genesis attempts to provide a minimal design whilst maintaining, and extending, the expressive power of other similar macro systems. The core Genesis language definition lacks many of the desirable features found in other systems, such as quasi-quote, hygiene, and static expression-type dispatch, but is expressive enough to define these as syntax extensions. User-defined macros produce only well-formed syntactic structures via the use of a predefined set of classes that define a Java abstract syntax. At the heart of Genesis is a flexible parser that is capable of parsing any context-free grammars - even ambiguous ones. The parser is capable of arbitrary speculation and will consider all possible parses. The parser constructs a graph of possible paths, and is capable of dynamically pruning this graph, or combining nodes, based on precedence or associativity rules. This general parser allows macro programmers to forget about parsing, and concentrate on defining new syntax. One key goal of this system was to address the programmer's learning curve by providing as simple a system as possible. This was achieved by the use of the flexible parser, the introduction of only one new construct to standard Java, and extensions to make programming macros more user friendly. The expressiveness of Genesis is wide ranging; it is capable of providing small scale limited use macros, large scale semantic modifications, through to complete language replacements. To demonstrate this expressiveness, we implement many of the simple test cases found in other systems, such as a type-safe printf, assertions, and iteration statements. These test cases require an ability to perform static type-checking and to manipulate compile-time values and abstract syntax trees. As additional examples of Genesis' expressive power we also provide implementations of embedded subsets of SQL and Haskell. As a final proof of power, the Haskell subset can operate as a stand-alone extension independent of any recognisable Java code.
|
4 |
Electronic blocks: A new resource for technology educationWyeth, P. A. Unknown Date (has links)
No description available.
|
5 |
VERTIPH : a visual environment for real-time image processing on hardware : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Systems Engineering at Massey University, Palmerston North, New ZealandJohnston, Christopher Troy January 2009 (has links)
This thesis presents VERTIPH, a visual programming language for the development of image processing algorithms on FPGA hardware. The research began with an examination of the whole design cycle, with a view to identifying requirements for implementing image processing on FPGAs. Based on this analysis, a design process was developed where a selected software algorithm is matched to a hardware architecture tailor made for its implementation. The algorithm and architecture are then transformed into an FPGA suitable design. It was found that in most cases the most efficient mapping for image processing algorithms is to use a streamed processing approach. This constrains how data is presented and requires most existing algorithms to be extensively modified. Therefore, the resultant designs are heavily streamed and pipelined. A visual notation was developed to complement this design process, as both streaming and pipelining can be well represented by data flow visual languages. The notation has three views each of which represents and supports a different part of the design process. An architecture view gives an overview of the design's main blocks and their interconnections. A computational view represents lower-level details by representing each block by a set of computational expressions and low-level controls. This includes a novel visual representation of pipelining that simplifies latency analysis, multiphase design, priming, flushing and stalling, and the detection of sequencing errors. A scheduling view adds a state machine for high-level control of processing blocks. This extended state objects to allow for the priming and flushing of pipelined operations. User evaluations of an implementation of the key parts of this language (the architecture view and the computational view) found that both were generally good visualisations and aided in design (especially the type interface, pipeline and control notations). The user evaluations provided several suggestions for the improvement of the language, and in particular the evaluators would have preferred to use the diagrams as a verification tool for a textual representation rather than as the primary data capture mechanism. A cognitive dimensions analysis showed that the language scores highly for thirteen of the twenty dimensions considered, particularly those related to making details of the design clearer to the developer.
|
6 |
VERTIPH : a visual environment for real-time image processing on hardware : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Systems Engineering at Massey University, Palmerston North, New ZealandJohnston, Christopher Troy January 2009 (has links)
This thesis presents VERTIPH, a visual programming language for the development of image processing algorithms on FPGA hardware. The research began with an examination of the whole design cycle, with a view to identifying requirements for implementing image processing on FPGAs. Based on this analysis, a design process was developed where a selected software algorithm is matched to a hardware architecture tailor made for its implementation. The algorithm and architecture are then transformed into an FPGA suitable design. It was found that in most cases the most efficient mapping for image processing algorithms is to use a streamed processing approach. This constrains how data is presented and requires most existing algorithms to be extensively modified. Therefore, the resultant designs are heavily streamed and pipelined. A visual notation was developed to complement this design process, as both streaming and pipelining can be well represented by data flow visual languages. The notation has three views each of which represents and supports a different part of the design process. An architecture view gives an overview of the design's main blocks and their interconnections. A computational view represents lower-level details by representing each block by a set of computational expressions and low-level controls. This includes a novel visual representation of pipelining that simplifies latency analysis, multiphase design, priming, flushing and stalling, and the detection of sequencing errors. A scheduling view adds a state machine for high-level control of processing blocks. This extended state objects to allow for the priming and flushing of pipelined operations. User evaluations of an implementation of the key parts of this language (the architecture view and the computational view) found that both were generally good visualisations and aided in design (especially the type interface, pipeline and control notations). The user evaluations provided several suggestions for the improvement of the language, and in particular the evaluators would have preferred to use the diagrams as a verification tool for a textual representation rather than as the primary data capture mechanism. A cognitive dimensions analysis showed that the language scores highly for thirteen of the twenty dimensions considered, particularly those related to making details of the design clearer to the developer.
|
7 |
VERTIPH : a visual environment for real-time image processing on hardware : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Systems Engineering at Massey University, Palmerston North, New ZealandJohnston, Christopher Troy January 2009 (has links)
This thesis presents VERTIPH, a visual programming language for the development of image processing algorithms on FPGA hardware. The research began with an examination of the whole design cycle, with a view to identifying requirements for implementing image processing on FPGAs. Based on this analysis, a design process was developed where a selected software algorithm is matched to a hardware architecture tailor made for its implementation. The algorithm and architecture are then transformed into an FPGA suitable design. It was found that in most cases the most efficient mapping for image processing algorithms is to use a streamed processing approach. This constrains how data is presented and requires most existing algorithms to be extensively modified. Therefore, the resultant designs are heavily streamed and pipelined. A visual notation was developed to complement this design process, as both streaming and pipelining can be well represented by data flow visual languages. The notation has three views each of which represents and supports a different part of the design process. An architecture view gives an overview of the design's main blocks and their interconnections. A computational view represents lower-level details by representing each block by a set of computational expressions and low-level controls. This includes a novel visual representation of pipelining that simplifies latency analysis, multiphase design, priming, flushing and stalling, and the detection of sequencing errors. A scheduling view adds a state machine for high-level control of processing blocks. This extended state objects to allow for the priming and flushing of pipelined operations. User evaluations of an implementation of the key parts of this language (the architecture view and the computational view) found that both were generally good visualisations and aided in design (especially the type interface, pipeline and control notations). The user evaluations provided several suggestions for the improvement of the language, and in particular the evaluators would have preferred to use the diagrams as a verification tool for a textual representation rather than as the primary data capture mechanism. A cognitive dimensions analysis showed that the language scores highly for thirteen of the twenty dimensions considered, particularly those related to making details of the design clearer to the developer.
|
Page generated in 0.0819 seconds