• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • Tagged with
  • 76
  • 76
  • 76
  • 68
  • 68
  • 68
  • 68
  • 52
  • 52
  • 52
  • 52
  • 51
  • 51
  • 51
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Anaerobic co-digestion of municipal primary sludge and whey : a dissertation submitted in partial fulfilment of the requirements for the Masters degree in Environmental Engineering at Massey University, Palmerston North, New Zealand

Zhang, Xinyuan January 2010 (has links)
The aim of this research was to investigate the feasibility of co-digestion of municipal primary sludge and whey by anaerobic CSTR (Continuous Stirred Tank Reactor), as well as the factors that affect the performance of the co-digestion reactors. Before studying the co-digestion process, a semi-continuous whey digestion experiment was conducted to analyze the feasibility of anaerobic digestion of whey along with pH control. The results obtained from the study indicated that supplement of nutrients, trace elements as well as heavy metals was necessary to maintain the anaerobic whey digestion system. To investigate the co-digestion of primary sludge and whey process, the effects of pH, OLR (Organic Loading Rate), HRT (Hydraulic retention time) as well as the COD (Chemical Oxygen Demand) loading ratio of primary sludge to whey on the performance of the reactors were studied. The results of the co-digestion experiments demonstrated that it was feasible to co-digest primary sludge and whey without nutrient, trace element and heavy metal supplement. The TCOD (Total Chemical Oxygen Demand) removal efficiency and the biogas production of the co-digestion system increased with the increase of OLR. At same OLR, digestion of the mixture of primary sludge and whey with higher whey content achieved higher biogas production and TCOD removal efficiency. The anaerobic co-digestion of primary sludge and whey process performed successfully at OLR of 5.8 ± 0.1g COD/l.d without pH control when the COD loading ratio of primary sludge to whey was approximately 70:30, due to the fact that the primary sludge may serve as buffering reagent. By adding sodium bicarbonate (NaHCO3) to maintain the pH at 6.9 ± 0.1, the OLR of the co-digestion reactor could reach 8.1 ± 0.1 g COD/l.d at HRT of 20 days. Moreover, by co-digestion of primary sludge and whey solution, the reactor could be operated successfully at HRT of 10 days and at OLR of 7.6 ± 0.1 g COD/l.d with COD loading ratio of primary sludge to whey of 53 : 47. The biogas production (3.2 ± 0.1 l/d) was 1.5 l/d higher than digestion of the same amount of primary sludge alone (1.7 ± 0.1 l/d).
12

Totara Valley micro-hydro development : a thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science in Renewable Energy Engineering, Massey University, Palmerston North, New Zealand

Donnelly, David Ronald Unknown Date (has links)
This study focuses on the design, construction and operation of a distributed generation system based on micro-hydro technology. The project is sited in the Totara Valley, a small rural community approximately 70km from the Massey University, Turitea campus, Palmerston North. The Massey University Centre for Energy Research (MUCER) has a long history of renewable energy research within the Totara Valley community. This project complements these existing schemes and provides a foundation for future research into distributed generation technologies. The project encompasses the following objectives: - to gain practical experience in the design, engineering and implementation of a distributed generation system in rural New Zealand; - to evaluate contemporary micro-hydro technology and compare the performance of this equipment in a theoretical and practical context; - to identify barriers that hinder the widespread adoption of micro-hydro systems in rural New Zealand; - to develop a spreadsheet based life cycle costing tool. The results from this study demonstrate that economic considerations are the fundamental aspect to be considered when assessing the long-term viability of these projects. The viability of micro-hydro projects are primarily determined by four factors: - the volume and head (height) of water available above the turbine site; - the length and therefore the cost of the pipeline required for transporting water to the turbine; - the legal and administrative costs involved in obtaining a resource consent to maintain access to the water resources; - the prices received and paid for electricity. Considerable charges were payable to the local authority to secure and maintain the right to harness the water resources at this site. This cost contributed considerable risk to the project and creates a significant barrier to establishing similar systems at other sites. The reduction of resource consent charges to levels that fairly reflect the negligible environmental impacts of these projects would encourage the adoption of this technology and deliver benefits to rural New Zealand communities.
13

Totara Valley micro-hydro development : a thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science in Renewable Energy Engineering, Massey University, Palmerston North, New Zealand

Donnelly, David Ronald Unknown Date (has links)
This study focuses on the design, construction and operation of a distributed generation system based on micro-hydro technology. The project is sited in the Totara Valley, a small rural community approximately 70km from the Massey University, Turitea campus, Palmerston North. The Massey University Centre for Energy Research (MUCER) has a long history of renewable energy research within the Totara Valley community. This project complements these existing schemes and provides a foundation for future research into distributed generation technologies. The project encompasses the following objectives: - to gain practical experience in the design, engineering and implementation of a distributed generation system in rural New Zealand; - to evaluate contemporary micro-hydro technology and compare the performance of this equipment in a theoretical and practical context; - to identify barriers that hinder the widespread adoption of micro-hydro systems in rural New Zealand; - to develop a spreadsheet based life cycle costing tool. The results from this study demonstrate that economic considerations are the fundamental aspect to be considered when assessing the long-term viability of these projects. The viability of micro-hydro projects are primarily determined by four factors: - the volume and head (height) of water available above the turbine site; - the length and therefore the cost of the pipeline required for transporting water to the turbine; - the legal and administrative costs involved in obtaining a resource consent to maintain access to the water resources; - the prices received and paid for electricity. Considerable charges were payable to the local authority to secure and maintain the right to harness the water resources at this site. This cost contributed considerable risk to the project and creates a significant barrier to establishing similar systems at other sites. The reduction of resource consent charges to levels that fairly reflect the negligible environmental impacts of these projects would encourage the adoption of this technology and deliver benefits to rural New Zealand communities.
14

Totara Valley micro-hydro development : a thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science in Renewable Energy Engineering, Massey University, Palmerston North, New Zealand

Donnelly, David Ronald Unknown Date (has links)
This study focuses on the design, construction and operation of a distributed generation system based on micro-hydro technology. The project is sited in the Totara Valley, a small rural community approximately 70km from the Massey University, Turitea campus, Palmerston North. The Massey University Centre for Energy Research (MUCER) has a long history of renewable energy research within the Totara Valley community. This project complements these existing schemes and provides a foundation for future research into distributed generation technologies. The project encompasses the following objectives: - to gain practical experience in the design, engineering and implementation of a distributed generation system in rural New Zealand; - to evaluate contemporary micro-hydro technology and compare the performance of this equipment in a theoretical and practical context; - to identify barriers that hinder the widespread adoption of micro-hydro systems in rural New Zealand; - to develop a spreadsheet based life cycle costing tool. The results from this study demonstrate that economic considerations are the fundamental aspect to be considered when assessing the long-term viability of these projects. The viability of micro-hydro projects are primarily determined by four factors: - the volume and head (height) of water available above the turbine site; - the length and therefore the cost of the pipeline required for transporting water to the turbine; - the legal and administrative costs involved in obtaining a resource consent to maintain access to the water resources; - the prices received and paid for electricity. Considerable charges were payable to the local authority to secure and maintain the right to harness the water resources at this site. This cost contributed considerable risk to the project and creates a significant barrier to establishing similar systems at other sites. The reduction of resource consent charges to levels that fairly reflect the negligible environmental impacts of these projects would encourage the adoption of this technology and deliver benefits to rural New Zealand communities.
15

Totara Valley micro-hydro development : a thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science in Renewable Energy Engineering, Massey University, Palmerston North, New Zealand

Donnelly, David Ronald Unknown Date (has links)
This study focuses on the design, construction and operation of a distributed generation system based on micro-hydro technology. The project is sited in the Totara Valley, a small rural community approximately 70km from the Massey University, Turitea campus, Palmerston North. The Massey University Centre for Energy Research (MUCER) has a long history of renewable energy research within the Totara Valley community. This project complements these existing schemes and provides a foundation for future research into distributed generation technologies. The project encompasses the following objectives: - to gain practical experience in the design, engineering and implementation of a distributed generation system in rural New Zealand; - to evaluate contemporary micro-hydro technology and compare the performance of this equipment in a theoretical and practical context; - to identify barriers that hinder the widespread adoption of micro-hydro systems in rural New Zealand; - to develop a spreadsheet based life cycle costing tool. The results from this study demonstrate that economic considerations are the fundamental aspect to be considered when assessing the long-term viability of these projects. The viability of micro-hydro projects are primarily determined by four factors: - the volume and head (height) of water available above the turbine site; - the length and therefore the cost of the pipeline required for transporting water to the turbine; - the legal and administrative costs involved in obtaining a resource consent to maintain access to the water resources; - the prices received and paid for electricity. Considerable charges were payable to the local authority to secure and maintain the right to harness the water resources at this site. This cost contributed considerable risk to the project and creates a significant barrier to establishing similar systems at other sites. The reduction of resource consent charges to levels that fairly reflect the negligible environmental impacts of these projects would encourage the adoption of this technology and deliver benefits to rural New Zealand communities.
16

Totara Valley micro-hydro development : a thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science in Renewable Energy Engineering, Massey University, Palmerston North, New Zealand

Donnelly, David Ronald Unknown Date (has links)
This study focuses on the design, construction and operation of a distributed generation system based on micro-hydro technology. The project is sited in the Totara Valley, a small rural community approximately 70km from the Massey University, Turitea campus, Palmerston North. The Massey University Centre for Energy Research (MUCER) has a long history of renewable energy research within the Totara Valley community. This project complements these existing schemes and provides a foundation for future research into distributed generation technologies. The project encompasses the following objectives: - to gain practical experience in the design, engineering and implementation of a distributed generation system in rural New Zealand; - to evaluate contemporary micro-hydro technology and compare the performance of this equipment in a theoretical and practical context; - to identify barriers that hinder the widespread adoption of micro-hydro systems in rural New Zealand; - to develop a spreadsheet based life cycle costing tool. The results from this study demonstrate that economic considerations are the fundamental aspect to be considered when assessing the long-term viability of these projects. The viability of micro-hydro projects are primarily determined by four factors: - the volume and head (height) of water available above the turbine site; - the length and therefore the cost of the pipeline required for transporting water to the turbine; - the legal and administrative costs involved in obtaining a resource consent to maintain access to the water resources; - the prices received and paid for electricity. Considerable charges were payable to the local authority to secure and maintain the right to harness the water resources at this site. This cost contributed considerable risk to the project and creates a significant barrier to establishing similar systems at other sites. The reduction of resource consent charges to levels that fairly reflect the negligible environmental impacts of these projects would encourage the adoption of this technology and deliver benefits to rural New Zealand communities.
17

Totara Valley micro-hydro development : a thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science in Renewable Energy Engineering, Massey University, Palmerston North, New Zealand

Donnelly, David Ronald Unknown Date (has links)
This study focuses on the design, construction and operation of a distributed generation system based on micro-hydro technology. The project is sited in the Totara Valley, a small rural community approximately 70km from the Massey University, Turitea campus, Palmerston North. The Massey University Centre for Energy Research (MUCER) has a long history of renewable energy research within the Totara Valley community. This project complements these existing schemes and provides a foundation for future research into distributed generation technologies. The project encompasses the following objectives: - to gain practical experience in the design, engineering and implementation of a distributed generation system in rural New Zealand; - to evaluate contemporary micro-hydro technology and compare the performance of this equipment in a theoretical and practical context; - to identify barriers that hinder the widespread adoption of micro-hydro systems in rural New Zealand; - to develop a spreadsheet based life cycle costing tool. The results from this study demonstrate that economic considerations are the fundamental aspect to be considered when assessing the long-term viability of these projects. The viability of micro-hydro projects are primarily determined by four factors: - the volume and head (height) of water available above the turbine site; - the length and therefore the cost of the pipeline required for transporting water to the turbine; - the legal and administrative costs involved in obtaining a resource consent to maintain access to the water resources; - the prices received and paid for electricity. Considerable charges were payable to the local authority to secure and maintain the right to harness the water resources at this site. This cost contributed considerable risk to the project and creates a significant barrier to establishing similar systems at other sites. The reduction of resource consent charges to levels that fairly reflect the negligible environmental impacts of these projects would encourage the adoption of this technology and deliver benefits to rural New Zealand communities.
18

Totara Valley micro-hydro development : a thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science in Renewable Energy Engineering, Massey University, Palmerston North, New Zealand

Donnelly, David Ronald Unknown Date (has links)
This study focuses on the design, construction and operation of a distributed generation system based on micro-hydro technology. The project is sited in the Totara Valley, a small rural community approximately 70km from the Massey University, Turitea campus, Palmerston North. The Massey University Centre for Energy Research (MUCER) has a long history of renewable energy research within the Totara Valley community. This project complements these existing schemes and provides a foundation for future research into distributed generation technologies. The project encompasses the following objectives: - to gain practical experience in the design, engineering and implementation of a distributed generation system in rural New Zealand; - to evaluate contemporary micro-hydro technology and compare the performance of this equipment in a theoretical and practical context; - to identify barriers that hinder the widespread adoption of micro-hydro systems in rural New Zealand; - to develop a spreadsheet based life cycle costing tool. The results from this study demonstrate that economic considerations are the fundamental aspect to be considered when assessing the long-term viability of these projects. The viability of micro-hydro projects are primarily determined by four factors: - the volume and head (height) of water available above the turbine site; - the length and therefore the cost of the pipeline required for transporting water to the turbine; - the legal and administrative costs involved in obtaining a resource consent to maintain access to the water resources; - the prices received and paid for electricity. Considerable charges were payable to the local authority to secure and maintain the right to harness the water resources at this site. This cost contributed considerable risk to the project and creates a significant barrier to establishing similar systems at other sites. The reduction of resource consent charges to levels that fairly reflect the negligible environmental impacts of these projects would encourage the adoption of this technology and deliver benefits to rural New Zealand communities.
19

Totara Valley micro-hydro development : a thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science in Renewable Energy Engineering, Massey University, Palmerston North, New Zealand

Donnelly, David Ronald Unknown Date (has links)
This study focuses on the design, construction and operation of a distributed generation system based on micro-hydro technology. The project is sited in the Totara Valley, a small rural community approximately 70km from the Massey University, Turitea campus, Palmerston North. The Massey University Centre for Energy Research (MUCER) has a long history of renewable energy research within the Totara Valley community. This project complements these existing schemes and provides a foundation for future research into distributed generation technologies. The project encompasses the following objectives: - to gain practical experience in the design, engineering and implementation of a distributed generation system in rural New Zealand; - to evaluate contemporary micro-hydro technology and compare the performance of this equipment in a theoretical and practical context; - to identify barriers that hinder the widespread adoption of micro-hydro systems in rural New Zealand; - to develop a spreadsheet based life cycle costing tool. The results from this study demonstrate that economic considerations are the fundamental aspect to be considered when assessing the long-term viability of these projects. The viability of micro-hydro projects are primarily determined by four factors: - the volume and head (height) of water available above the turbine site; - the length and therefore the cost of the pipeline required for transporting water to the turbine; - the legal and administrative costs involved in obtaining a resource consent to maintain access to the water resources; - the prices received and paid for electricity. Considerable charges were payable to the local authority to secure and maintain the right to harness the water resources at this site. This cost contributed considerable risk to the project and creates a significant barrier to establishing similar systems at other sites. The reduction of resource consent charges to levels that fairly reflect the negligible environmental impacts of these projects would encourage the adoption of this technology and deliver benefits to rural New Zealand communities.
20

Totara Valley micro-hydro development : a thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science in Renewable Energy Engineering, Massey University, Palmerston North, New Zealand

Donnelly, David Ronald Unknown Date (has links)
This study focuses on the design, construction and operation of a distributed generation system based on micro-hydro technology. The project is sited in the Totara Valley, a small rural community approximately 70km from the Massey University, Turitea campus, Palmerston North. The Massey University Centre for Energy Research (MUCER) has a long history of renewable energy research within the Totara Valley community. This project complements these existing schemes and provides a foundation for future research into distributed generation technologies. The project encompasses the following objectives: - to gain practical experience in the design, engineering and implementation of a distributed generation system in rural New Zealand; - to evaluate contemporary micro-hydro technology and compare the performance of this equipment in a theoretical and practical context; - to identify barriers that hinder the widespread adoption of micro-hydro systems in rural New Zealand; - to develop a spreadsheet based life cycle costing tool. The results from this study demonstrate that economic considerations are the fundamental aspect to be considered when assessing the long-term viability of these projects. The viability of micro-hydro projects are primarily determined by four factors: - the volume and head (height) of water available above the turbine site; - the length and therefore the cost of the pipeline required for transporting water to the turbine; - the legal and administrative costs involved in obtaining a resource consent to maintain access to the water resources; - the prices received and paid for electricity. Considerable charges were payable to the local authority to secure and maintain the right to harness the water resources at this site. This cost contributed considerable risk to the project and creates a significant barrier to establishing similar systems at other sites. The reduction of resource consent charges to levels that fairly reflect the negligible environmental impacts of these projects would encourage the adoption of this technology and deliver benefits to rural New Zealand communities.

Page generated in 0.0904 seconds