• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An investigation of the nucleation and growth of crystals from undercooled metal melts

Powell, Graham Leonard Fraser. Unknown Date (has links)
No description available.
2

An investigation of the nucleation and growth of crystals from undercooled metal melts

Powell, Graham Leonard Fraser. Unknown Date (has links)
No description available.
3

Splat-substrate interactions in high velocity thermal spray coatings

Trompetter, W. J. January 2007 (has links)
Thermal spray coatings applied with high velocity techniques produce dense, industrial quality coatings with strong adhesion and minimal decomposition. This thesis reports on investigations of splat-substrate interactions for both solid and molten splats. Specifically, individual particles were studied to see how the particle is altered during the spray coating process, how they bond to the substrate and the role of surface oxides. Investigations of NiCr particles high velocity air fuel (HVAF) thermally sprayed onto different materials found that soft substrates predominantly had deeply penetrating solid particles, whereas harder substrates resisted particle penetration and had a higher percentage of molten splats. This effect is caused by particle kinetic energy converted into heat during plastic deformation. The percentage of particle kinetic energy converted into heat is proportional to substrate hardness. It was also discovered that during the coating process the oxide is not removed or altered in composition, but becomes redistributed over a larger surface area due to the plastic deformation of the substrate. During this process, small scale redistribution and penetration of the oxide material by the incoming particle occurs. These results support the idea that successful bonding can occur only when the surface oxide on the substrate and on the coating material has been disturbed (for solid splats) or disrupted (for molten splats). To date, our knowledge of solid splat bonding processes within thermal spray coatings has been very subjective where mechanical and chemical bonding has been expected to contribute. In this thesis, the splat-substrate interface was investigated with focused ion beam (FIB) microscopy, cross-sectional SEM and cross-sectional TEM. For solid NiCr splat HVAF coatings, the discovery of interfacial formations, together with no evidence of chemical bonding across the particle-substrate interface suggest that mechanical bonding is the dominant bonding mechanism for solid splat coatings; where as chemical bonding only plays a role when splats and/or substrate become molten. / GNS Science
4

Splat-substrate interactions in high velocity thermal spray coatings

Trompetter, W. J. January 2007 (has links)
Thermal spray coatings applied with high velocity techniques produce dense, industrial quality coatings with strong adhesion and minimal decomposition. This thesis reports on investigations of splat-substrate interactions for both solid and molten splats. Specifically, individual particles were studied to see how the particle is altered during the spray coating process, how they bond to the substrate and the role of surface oxides. Investigations of NiCr particles high velocity air fuel (HVAF) thermally sprayed onto different materials found that soft substrates predominantly had deeply penetrating solid particles, whereas harder substrates resisted particle penetration and had a higher percentage of molten splats. This effect is caused by particle kinetic energy converted into heat during plastic deformation. The percentage of particle kinetic energy converted into heat is proportional to substrate hardness. It was also discovered that during the coating process the oxide is not removed or altered in composition, but becomes redistributed over a larger surface area due to the plastic deformation of the substrate. During this process, small scale redistribution and penetration of the oxide material by the incoming particle occurs. These results support the idea that successful bonding can occur only when the surface oxide on the substrate and on the coating material has been disturbed (for solid splats) or disrupted (for molten splats). To date, our knowledge of solid splat bonding processes within thermal spray coatings has been very subjective where mechanical and chemical bonding has been expected to contribute. In this thesis, the splat-substrate interface was investigated with focused ion beam (FIB) microscopy, cross-sectional SEM and cross-sectional TEM. For solid NiCr splat HVAF coatings, the discovery of interfacial formations, together with no evidence of chemical bonding across the particle-substrate interface suggest that mechanical bonding is the dominant bonding mechanism for solid splat coatings; where as chemical bonding only plays a role when splats and/or substrate become molten. / GNS Science
5

Splat-substrate interactions in high velocity thermal spray coatings

Trompetter, W. J. January 2007 (has links)
Thermal spray coatings applied with high velocity techniques produce dense, industrial quality coatings with strong adhesion and minimal decomposition. This thesis reports on investigations of splat-substrate interactions for both solid and molten splats. Specifically, individual particles were studied to see how the particle is altered during the spray coating process, how they bond to the substrate and the role of surface oxides. Investigations of NiCr particles high velocity air fuel (HVAF) thermally sprayed onto different materials found that soft substrates predominantly had deeply penetrating solid particles, whereas harder substrates resisted particle penetration and had a higher percentage of molten splats. This effect is caused by particle kinetic energy converted into heat during plastic deformation. The percentage of particle kinetic energy converted into heat is proportional to substrate hardness. It was also discovered that during the coating process the oxide is not removed or altered in composition, but becomes redistributed over a larger surface area due to the plastic deformation of the substrate. During this process, small scale redistribution and penetration of the oxide material by the incoming particle occurs. These results support the idea that successful bonding can occur only when the surface oxide on the substrate and on the coating material has been disturbed (for solid splats) or disrupted (for molten splats). To date, our knowledge of solid splat bonding processes within thermal spray coatings has been very subjective where mechanical and chemical bonding has been expected to contribute. In this thesis, the splat-substrate interface was investigated with focused ion beam (FIB) microscopy, cross-sectional SEM and cross-sectional TEM. For solid NiCr splat HVAF coatings, the discovery of interfacial formations, together with no evidence of chemical bonding across the particle-substrate interface suggest that mechanical bonding is the dominant bonding mechanism for solid splat coatings; where as chemical bonding only plays a role when splats and/or substrate become molten. / GNS Science
6

Splat-substrate interactions in high velocity thermal spray coatings

Trompetter, W. J. January 2007 (has links)
Thermal spray coatings applied with high velocity techniques produce dense, industrial quality coatings with strong adhesion and minimal decomposition. This thesis reports on investigations of splat-substrate interactions for both solid and molten splats. Specifically, individual particles were studied to see how the particle is altered during the spray coating process, how they bond to the substrate and the role of surface oxides. Investigations of NiCr particles high velocity air fuel (HVAF) thermally sprayed onto different materials found that soft substrates predominantly had deeply penetrating solid particles, whereas harder substrates resisted particle penetration and had a higher percentage of molten splats. This effect is caused by particle kinetic energy converted into heat during plastic deformation. The percentage of particle kinetic energy converted into heat is proportional to substrate hardness. It was also discovered that during the coating process the oxide is not removed or altered in composition, but becomes redistributed over a larger surface area due to the plastic deformation of the substrate. During this process, small scale redistribution and penetration of the oxide material by the incoming particle occurs. These results support the idea that successful bonding can occur only when the surface oxide on the substrate and on the coating material has been disturbed (for solid splats) or disrupted (for molten splats). To date, our knowledge of solid splat bonding processes within thermal spray coatings has been very subjective where mechanical and chemical bonding has been expected to contribute. In this thesis, the splat-substrate interface was investigated with focused ion beam (FIB) microscopy, cross-sectional SEM and cross-sectional TEM. For solid NiCr splat HVAF coatings, the discovery of interfacial formations, together with no evidence of chemical bonding across the particle-substrate interface suggest that mechanical bonding is the dominant bonding mechanism for solid splat coatings; where as chemical bonding only plays a role when splats and/or substrate become molten. / GNS Science

Page generated in 0.044 seconds