Spelling suggestions: "subject:"2D magnets"" "subject:"2D agnets""
1 |
Engineering Properties of Transition Metal Halides via Cationic AlloyingJanuary 2020 (has links)
abstract: Transition metal di- and tri-halides (TMH) have recently gathered research attention owing to their intrinsic magnetism all the way down to their two-dimensional limit. 2D magnets, despite being a crucial component for realizing van der Waals heterostructures and devices with various functionalities, were not experimentally proven until very recently in 2017. The findings opened up enormous possibilities for studying new quantum states of matter that can enable potential to design spintronic, magnetic memory, data storage, sensing, and topological devices. However, practical applications in modern technologies demand materials with various physical and chemical properties such as electronic, optical, structural, catalytic, magnetic etc., which cannot be found within single material systems. Considering that compositional modifications in 2D systems lead to significant changes in properties due to the high anisotropy inherent to their crystallographic structure, this work focuses on alloying of TMH compounds to explore the potentials for tuning their properties. In this thesis, the ternary cation alloys of Co(1-x)Ni(x)Cl(2) and Mo(1-x)Cr(x)Cl(3) were synthesized via chemical vapor transport at a various stoichiometry. Their compositional, structural, and magnetic properties were studied using Energy Dispersive Spectroscopy, Raman Spectroscopy, X-Ray Diffraction, and Vibrating Sample Magnetometry. It was found that completely miscible ternary alloys of Co(1-x)Ni(x)Cl(2) show an increasing Néel temperature with nickel concentration. The Mo(1-x)Cr(x)Cl(3) alloy shows potential magnetic phase changes induced by the incorporation of molybdenum species within the host CrCl3 lattice. Magnetic measurements give insight into potential antiferromagnetic to ferromagnetic transition with molybdenum incorporation, accompanied by a shift in the magnetic easy-axis from parallel to perpendicular. Phase separation was found in the Fe(1-x)Cr(x)Cl(3) ternary alloy indicating that crystallographic structure compatibility plays an essential role in determining the miscibility of two parent compounds. Alloying across two similar (TMH) compounds appears to yield predictable results in properties as in the case of Co(1-x)Ni(x)Cl(2), while more exotic transitions, as in the case of Mo(1-x)Cr(x)Cl(3), can emerge by alloying dissimilar compounds. When dissimilarity reaches a certain limit, as with Fe(1-x)Cr(x)Cl(3), phase separation becomes more favorable. Future studies focusing on magnetic and structural phase transitions will reveal more insight into the effect of alloying in these TMH systems. / Dissertation/Thesis / Masters Thesis Materials Science and Engineering 2020
|
2 |
An Investigation of Materials at the Intersection of Topology and Magnetism Using Scanning Tunneling MicroscopyWalko, Robert Conner 10 August 2022 (has links)
No description available.
|
3 |
Heterostructure engineering in 2D van der Waals Materials: Unveiling magnetism and strain effectsAndres E Llacsahuanga Allcca (17592618) 09 December 2023 (has links)
<p dir="ltr">Since the discovery of graphene in 2004, numerous other materials with intriguing electronic, optical, and magnetic properties have been found to be layered and exfoliatable down to atomic thickness. Owing to their weak interlayer coupling, mediated only by van der Waals forces, this new class of 2-dimensional materials, also known as van der Waals (vdW) materials, allows layer-by-layer stacking, overcoming some of the limitations of growth techniques. In particular, the growing inventory of vdW materials has expanded to include magnetic materials, further broadening the possibilities of novel devices based on stacked heterostructures. These magnetic heterostructures can find applications in spintronics and memory devices and may be combined with other vdW materials with optical properties for applications in optoelectronics. In this thesis, we assembled heterostructures via mechanical transfer or growth to modify the magnetism in these vdW materials. We used various optical and electrical techniques to probe the modified magnetism or its effects on the novel heterostructure. Thus, we observed the emergence of the magnetic proximity effect on the topological insulator BiSbTeSe<sub>2</sub> after dry transferring a thin flake of Cr<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub> on top, taking steps towards the observation of novel topological phases, such as the quantum Hall insulator. Additionally, we demonstrated an increased Curie temperature and magnetic anisotropy, effectively enhancing the magnetism, in thin flakes of Cr<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub> and Cr<sub>2</sub>Si<sub>2</sub>Te<sub>6</sub> after sputtering NiO or MgO. Finally, noting that the effect of modified magnetism in Cr2Ge2Te6 after sputtering NiO or MgO is induced due to wrinkle formation and strain, we further reproduce similar wrinkle formation on other 2D materials such as hBN, graphite, and 2D antiferromagnets (XPS<sub>3</sub>, (X= Mn, Fe, Ni), CrSBr, RuCl<sub>3</sub>). We used polarized Raman spectroscopy to characterize the induced biaxial strain in hBN and showed that such wrinkle formation can lead to moderately (up to 1.4% strain) spatially inhomogeneous and anisotropic strain profiles. These efforts demonstrate the versatility of tailoring the properties of these vdW materials.</p>
|
Page generated in 0.0474 seconds