• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Digitally Beamformed 2D Scanning Phased Array Radar for Networked Unmanned Air Vehicle Detection and Tracking

Brown, Carson Reed 28 May 2024 (has links) (PDF)
Radar systems vary significantly in size, weight, power, and cost (SWaP-C) characteristics with many high SWaP-C models being inaccessible to consumers. Recognizing this, we have engineered an effective but low SWaP-C networked radar system tailored for detecting and tracking unmanned air vehicle (UAV) traffic. Using field-programmable gate arrays (FPGAs), and custom-designed printed circuit boards (PCBs), our system achieves remarkable efficiency without compromising performance. We use patch antennas for our transmitter and in our 4x4 receiver array. With our low SWaP-C system we have successfully concluded outdoor range testing, detecting corner reflector targets at a remarkable 10dB above our noise floor up to a distance of 100m. We have also finished testing and implementation of our angle of arrival (AOA) algorithm, using conjugate field matched (CFM) beamforming, with outdoor testing using both corner reflectors and drones. Combining our range and AOA algorithms we have detected and tracked both a corner reflector and a drone through time and created a 3D plot showing our target's path and location relative to our system. With this we have demonstrated the viability and effectiveness of our low SWaP-C radar for UAV traffic surveillance.

Page generated in 0.0663 seconds