• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effectiveness of induced plant disease resistance: genotypic variation and quantification by chlorophyll fluorescence

Tung, Jonathan 16 September 2011 (has links)
Cultivars of Agrostis stolonifera showed weak and strong responsiveness to the systemic acquired resistance (SAR) activator, benzothiadiazole (BTH), or the induced systemic resistance (ISR) activator, 2R, 3R-butanediol (BD). Next Generation RNA sequencing was used to identify 2163 putative transcripts with increased expression in BTH versus water-treated A. stolonifera. Among three BTH-induced genes, AsASP-2 and AsHIR-1 were induced faster, while AsLOX-1 had stronger transient induction, in one out of two strongly BTH-responsive cultivars. Three ISR-responsive genes, AsGNS-5, AsOPR-4 and AsAOS-1, showed no greater induction or priming in the strongly versus weakly BD-responsive cultivars. Cultivars of A. stolonifera vary significantly in their response to defense activators, however this is not consistently related to defense gene expression. To quantify disease severity, chlorophyll fluorescence imaging of the maximum quantum efficiency of photosystem II (Fv/Fm) was tested on Nicotiana benthamiana infected with Colletotrichum orbiculare. Leaf areas of healthy, non-necrotic affected and necrotic tissue could be individually quantified, which demonstrated that BD delayed symptom development by approx. 24-hour and reduced non-necrotic affected tissue compared to controls. Chlorophyll fluorescence imaging can quantify and reveal novel features about induced disease resistance.

Page generated in 0.0395 seconds