1 |
ON THE ROLE OF CD24 IN THE PATHOGENICITY OF MYELIN ANTIGEN SPECIFIC T CELLSCarl, Joseph William, Jr 24 June 2008 (has links)
No description available.
|
2 |
Towards enhancing information dissemination in wireless networks / Vers une amélioration de la diffusion des informations dans les réseaux sans-filsAgarwal, Rachit 02 September 2013 (has links)
Dans les systèmes d'alertes publiques, l’étude de la diffusion des informations dans le réseau est essentielle. Les systèmes de diffusion des messages d'alertes doivent atteindre beaucoup de nœuds en peu de temps. Dans les réseaux de communication basés sur les interactions “device to device”, on s'est récemment beaucoup intéressé à la diffusion des informations et le besoin d'auto-organisation a été mis en évidence. L'auto-organisation conduit à des comportements locaux et des interactions qui ont un effet sur le réseau global et présentent un avantage de scalabilité. Ces réseaux auto-organisés peuvent être autonomes et utiliser peu d'espace mémoire. On peut développer des caractères auto-organisés dans les réseaux de communication en utilisant des idées venant de phénomènes naturels. Il semble intéressant de chercher à obtenir les propriétés des “small world” pour améliorer la diffusion des informations dans le réseau. Dans les modèles de “small world” on réalise un recâblage des liens dans le réseau en changeant la taille et la direction des liens existants. Dans un environnement sans-fils autonome une organisation de ce type peut être créée en utilisant le flocking, l'inhibition latérale et le “beamforming”. Dans ce but, l'auteur utilise d'abord l'analogie avec l'inhibition latérale, le flocking et le “beamforming” pour montrer comment la diffusion des informations peut être améliorée. L'analogue de l'inhibition latérale est utilisé pour créer des régions virtuelles dans le réseau. Puis en utilisant l'analogie avec les règles du flocking, on caractérise les propriétés des faisceaux permettant aux nœuds de communiquer dans les régions. Nous prouvons que les propriétés des “small world” sont vérifiées en utilisant la mesure des moyennes des longueurs des chemins. Cependant l'algorithme proposé est valable pour les réseaux statiques alors que dans les cas introduisant de la mobilité, les concepts d'inhibition latérale et de flocking nécessiteraient beaucoup plus de temps. Dans le cas d'un réseau mobile la structure du réseau change fréquemment. Certaines connexions intermittentes impactent fortement la diffusion des informations. L'auteur utilise le concept de stabilité avec le “beamforming” pour montrer comment on peut améliorer la diffusion des informations. Dans son algorithme il prévoit d'abord la stabilité du nœud en utilisant des informations locales et il utilise ce résultat pour identifier les nœuds qui réaliseront du beamforming. Dans l'algorithme, les nœuds de stabilité faible sont autorisés à faire du beamforming vers les nœuds de forte stabilité. La frontière entre forte et faible stabilité est fixée par un seuil. Cet algorithme ne nécessite pas une connaissance globale du réseau, mais utilise des données locales. Les résultats sont validés en étudiant le temps au bout duquel plus de nœuds reçoivent l'information et en comparant avec d'autres algorithmes de la littérature. Cependant, dans les réseaux réels, les changements de structure ne sont pas dus qu'à la mobilité, mais également à des changements de la densité des nœuds à un moment donné. Pour tenir compte de l'influence de tels événements sur la diffusion des informations concernant la sécurité publique, l'auteur utilise les concepts de modèle de métapopulation, épidémiologiques, “beamforming” et mobilité géographique obtenu à partir de données D4D. L'auteur propose la création de trois états latents qu'il ajoute au modèle épidémiologique connu: SIR. L'auteur étudie les états transitoires en analysant l'évolution du nombre de postes ayant reçu les informations et compare les résultats concernant ce nombre dans les différents cas. L'auteur démontre ainsi que le scenario qu'il propose permet d'améliorer le processus de diffusion des informations. Il montre aussi les effets de différents paramètres comme le nombre de sources, le nombre de paquets, les paramètres de mobilité et ceux qui caractérisent les antennes sur la diffusion des informations / In public warning message systems, information dissemination across the network is a critical aspect that has to be addressed. Dissemination of warning messages should be such that it reaches as many nodes in the network in a short time. In communication networks those based on device to device interactions, dissemination of the information has lately picked up lot of interest and the need for self organization of the network has been brought up. Self organization leads to local behaviors and interactions that have global effects and helps in addressing scaling issues. The use of self organized features allows autonomous behavior with low memory usage. Some examples of self organization phenomenon that are observed in nature are Lateral Inhibition and Flocking. In order to provide self organized features to communication networks, insights from such naturally occurring phenomenon is used. Achieving small world properties is an attractive way to enhance information dissemination across the network. In small world model rewiring of links in the network is performed by altering the length and the direction of the existing links. In an autonomous wireless environment such organization can be achieved using self organized phenomenon like Lateral inhibition and Flocking and beamforming (a concept in communication). Towards this, we first use Lateral Inhibition, analogy to Flocking behavior and beamforming to show how dissemination of information can be enhanced. Lateral Inhibition is used to create virtual regions in the network. Then using the analogy of Flocking rules, beam properties of the nodes in the regions are set. We then prove that small world properties are achieved using average path length metric. However, the proposed algorithm is applicable to static networks and Flocking and Lateral Inhibition concepts, if used in a mobile scenario, will be highly complex in terms of computation and memory. In a mobile scenario such as human mobility aided networks, the network structure changes frequently. In such conditions dissemination of information is highly impacted as new connections are made and old ones are broken. We thus use stability concept in mobile networks with beamforming to show how information dissemination process can be enhanced. In the algorithm, we first predict the stability of a node in the mobile network using locally available information and then uses it to identify beamforming nodes. In the algorithm, the low stability nodes are allowed to beamform towards the nodes with high stability. The difference between high and low stability nodes is based on threshold value. The algorithm is developed such that it does not require any global knowledge about the network and works using only local information. The results are validated using how quickly more number of nodes receive the information and different state of the art algorithms. We also show the effect of various parameters such as number of sources, number of packets, mobility parameters and antenna parameters etc. on the information dissemination process in the network. In realistic scenarios however, the dynamicity in the network is not only related to mobility. Dynamic conditions also arise due to change in density of nodes at a given time. To address effect of such scenario on the dissemination of information related to public safety in a metapopulation, we use the concepts of epidemic model, beamforming and the countrywide mobility pattern extracted from the $D4D$ dataset. Here, we also propose the addition of three latent states to the existing epidemic model ($SIR$ model). We study the transient states towards the evolution of the number of devices having the information and the difference in the number of devices having the information when compared with different cases to evaluate the results. Through the results we show that enhancements in the dissemination process can be achieved in the addressed scenario
|
3 |
Towards enhancing information dissemination in wireless networksAGARWAL, Rachit 02 September 2013 (has links) (PDF)
In public warning message systems, information dissemination across the network is a critical aspect that has to be addressed. Dissemination of warning messages should be such that it reaches as many nodes in the network in a short time. In communication networks those based on device to device interactions, dissemination of the information has lately picked up lot of interest and the need for self organization of the network has been brought up. Self organization leads to local behaviors and interactions that have global effects and helps in addressing scaling issues. The use of self organized features allows autonomous behavior with low memory usage. Some examples of self organization phenomenon that are observed in nature are Lateral Inhibition and Flocking. In order to provide self organized features to communication networks, insights from such naturally occurring phenomenon is used. Achieving small world properties is an attractive way to enhance information dissemination across the network. In small world model rewiring of links in the network is performed by altering the length and the direction of the existing links. In an autonomous wireless environment such organization can be achieved using self organized phenomenon like Lateral inhibition and Flocking and beamforming (a concept in communication). Towards this, we first use Lateral Inhibition, analogy to Flocking behavior and beamforming to show how dissemination of information can be enhanced. Lateral Inhibition is used to create virtual regions in the network. Then using the analogy of Flocking rules, beam properties of the nodes in the regions are set. We then prove that small world properties are achieved using average path length metric. However, the proposed algorithm is applicable to static networks and Flocking and Lateral Inhibition concepts, if used in a mobile scenario, will be highly complex in terms of computation and memory. In a mobile scenario such as human mobility aided networks, the network structure changes frequently. In such conditions dissemination of information is highly impacted as new connections are made and old ones are broken. We thus use stability concept in mobile networks with beamforming to show how information dissemination process can be enhanced. In the algorithm, we first predict the stability of a node in the mobile network using locally available information and then uses it to identify beamforming nodes. In the algorithm, the low stability nodes are allowed to beamform towards the nodes with high stability. The difference between high and low stability nodes is based on threshold value. The algorithm is developed such that it does not require any global knowledge about the network and works using only local information. The results are validated using how quickly more number of nodes receive the information and different state of the art algorithms. We also show the effect of various parameters such as number of sources, number of packets, mobility parameters and antenna parameters etc. on the information dissemination process in the network. In realistic scenarios however, the dynamicity in the network is not only related to mobility. Dynamic conditions also arise due to change in density of nodes at a given time. To address effect of such scenario on the dissemination of information related to public safety in a metapopulation, we use the concepts of epidemic model, beamforming and the countrywide mobility pattern extracted from the $D4D$ dataset. Here, we also propose the addition of three latent states to the existing epidemic model ($SIR$ model). We study the transient states towards the evolution of the number of devices having the information and the difference in the number of devices having the information when compared with different cases to evaluate the results. Through the results we show that enhancements in the dissemination process can be achieved in the addressed scenario
|
Page generated in 0.0264 seconds