• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Oxidation and reactivity of 3,4-dihydroxyphenylacetaldehyde, a reactive intermediate of dopamine metabolism

Anderson, David Gustav Rathe 01 May 2011 (has links)
Parkinson's disease (PD) is a progressive neurodegenerative and movement disorder that involves specific loss of dopaminergic neurons in the substantia nigra of the brain. Exact causes of PD are unknown. However, cells affected in PD are centers of dopamine (DA) synthesis, storage, and metabolism, which implicate DA as an endogenous neurotoxin that contributes to PD. Furthermore, DA is known to undergo oxidation to radicals and quinones. These reactive species exert deleterious effects on cells through a variety of mechanisms that are relevant to the pathogenesis of PD. Another potential mechanism of toxicity for DA is metabolism to 3,4-dihydroxyphenylacetaldehyde (DOPAL). This reactive metabolite is significantly more toxic than the parent DA. DOPAL has several demonstrated mechanisms of toxicity, including formation of protein-adducts via reaction with amine-type cellular nucleophiles. However, known toxicity mechanisms do not fully account for DOPAL's high toxicity. Oxidation of DOPAL to a reactive quinone or radical could help explain its high toxicity. Therefore, the hypothesis of this work is that DOPAL is capable of undergoing oxidation that leads to increased protein modification and nucleophilic reactivity. Experimentally, oxidation of DOPAL results in formation of a semi-quinone radical and an ortho-quinone, as confirmed by electron paramagnetic resonance spectroscopy and nuclear magnetic resonance spectroscopy, respectively. In agreement with the stated hypothesis, oxidation of DOPAL enhanced its ability to induce protein cross-linking of a model protein (glyceraldehyde 3-phosphate dehydrogenase) as indicated by polyacrylamide gel-electrophoresis. Also, the presence of anti-oxidants (ascorbate, N-acetyl cysteine) attenuated the reactivity of DOPAL with the model aminenucleophile N-acetyl lysine. These results indicate that DOPAL oxidation enhances both protein cross-linking and nucleophilic reactivity. This work resulted in several other important findings. DOPAL is shown to undergo carbonyl-hydration in aqueous media, and spontaneous oxidation of DOPAL results in formation of superoxide. Furthermore, DOPAL is shown to be susceptible to oxidation by cyclooxygenase-2, an enzyme known to be involved in PD. This provides a potential mechanism for formation of the oxidized products identified here. As DA metabolism and oxidation occur in cells affected by PD, the experimental results demonstrated here are likely relevant for understanding the pathogenesis of PD.
2

Parkinson's disease and a dopamine-derived neurotoxin, 3,4-Dihydroxyphenylacetaldehyde : implications for proteins, microglia, and neurons

Eckert, Laurie Leigh 01 December 2012 (has links)
Parkinson's disease (PD) is a prevalent neurodegenerative disorder for which the greatest risk factor is age. Four to five percent of 85-year-olds suffer from this debilitating disease, which is characterized by the selective loss of dopaminergic neurons within the substantia nigra and the presence of protein aggregates known as Lewy bodies. While the etiology of this disease is still unknown, recent research implicates oxidative stress, activated microglia, and reactive dopamine (DA) metabolites to play a role in the initiation or progression of the disease. Activated microglia cause injury to dopaminergic neurons via a host of mechanisms, including reactive oxygen species production, release of cytokines, and phagocytic activity. Microglial activation has been detected in the brains of PD patients, but the source of this activation has not been elucidated. Previous research has shown electrophiles and endogenous neurotoxins to play a role in this microglial activation. The interaction between the neurotoxic metabolite of DA, 3,4-dihydroxyphenylacetaldehyde (DOPAL), and microglia has not been explored. DOPAL is a highly reactive, bifunctional electrophile produced by oxidative deamination of DA by monoamine oxidase (MAO). DOPAL is oxidized in the major metabolism pathway to 3,4-dihydroxyphenylacetic acid (DOPAC) by aldehyde dehydrogenase (ALDH). DOPAL has previously been shown to be 100-fold more toxic than DA in vitro and in vivo. Potent inhibition of the rate-limiting enzyme in DA biosynthesis, tyrosine hydroxylase, by DOPAL has been well-established. DOPAL-mediated aggregation of Α-synuclein, the primary component of PD-hallmark Lewy bodies, has been suggested but was further explored in this work. Results presented in this body of work include further determination of the aggregation of Α-synuclein by DOPAL, including evidence of covalent modification. The interaction of DOPAL with BV-2 microglia, an immortalized cell line, was addressed in depth through exploration of DOPAL catabolism, toxicity, and generation of an activational response. Metabolism of DOPAL to DOPAC was altered in activated microglia, with the production of DOPAC reduced by ~40%. Metabolism of DOPAL to DOPAC was also inhibited by both 4-hydroxynonenal and malondialdehyde, gold standards of lipid peroxidation. Both of these compounds were found to be significantly toxic to BV-2 cells at concentrations well below those considered toxic to dopaminergic cells. Alternatively, DOPAL and DA were found to be non-toxic to this cell line, while DOPAL was shown to be significantly toxic to dopaminergic cells at concentrations as low as 10 ΜM. Significant activation of BV-2 microglia by DOPAL was observed at 10 ΜM and above by release of TNF-Α. Morphological changes, release of IL-6, and changes in expression of COX-2 also indicated activation by DOPAL but not DA or DOPAC. BV-2-conditioned media, generated by incubation with DA, DOPAL, or DOPAC, was added to MN9D cells, and toxicity was measured by the MTT assay. BV-2 conditioned media generated by DOPAL incubation produced the greatest toxicity for MN9D cells. These results implicate DOPAL in dopaminergic cell death through microglial activation.

Page generated in 0.0674 seconds