• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MOIRAE : a computational strategy to predict 3-D structures of polypeptides

Dorn, Márcio January 2012 (has links)
Currently, one of the main research problems in Structural Bioinformatics is associated to the study and prediction of the 3-D structure of proteins. The 1990’s GENOME projects resulted in a large increase in the number of protein sequences. However, the number of identified 3-D protein structures have not followed the same growth trend. The number of protein sequences is much higher than the number of known 3-D structures. Many computational methodologies, systems and algorithms have been proposed to address the protein structure prediction problem. However, the problem still remains challenging because of the complexity and high dimensionality of a protein conformational search space. This work presents a new computational strategy for the 3-D protein structure prediction problem. A first principle strategy which uses database information for the prediction of the 3-D structure of polypeptides was developed. The proposed technique manipulates structural information from the PDB in order to generate torsion angles intervals. Torsion angles intervals are used as input to a genetic algorithm with a local-search operator in order to search the protein conformational space and predict its 3-D structure. Results show that the 3-D structures obtained by the proposed method were topologically comparable to their correspondent experimental structure.
2

MOIRAE : a computational strategy to predict 3-D structures of polypeptides

Dorn, Márcio January 2012 (has links)
Currently, one of the main research problems in Structural Bioinformatics is associated to the study and prediction of the 3-D structure of proteins. The 1990’s GENOME projects resulted in a large increase in the number of protein sequences. However, the number of identified 3-D protein structures have not followed the same growth trend. The number of protein sequences is much higher than the number of known 3-D structures. Many computational methodologies, systems and algorithms have been proposed to address the protein structure prediction problem. However, the problem still remains challenging because of the complexity and high dimensionality of a protein conformational search space. This work presents a new computational strategy for the 3-D protein structure prediction problem. A first principle strategy which uses database information for the prediction of the 3-D structure of polypeptides was developed. The proposed technique manipulates structural information from the PDB in order to generate torsion angles intervals. Torsion angles intervals are used as input to a genetic algorithm with a local-search operator in order to search the protein conformational space and predict its 3-D structure. Results show that the 3-D structures obtained by the proposed method were topologically comparable to their correspondent experimental structure.
3

MOIRAE : a computational strategy to predict 3-D structures of polypeptides

Dorn, Márcio January 2012 (has links)
Currently, one of the main research problems in Structural Bioinformatics is associated to the study and prediction of the 3-D structure of proteins. The 1990’s GENOME projects resulted in a large increase in the number of protein sequences. However, the number of identified 3-D protein structures have not followed the same growth trend. The number of protein sequences is much higher than the number of known 3-D structures. Many computational methodologies, systems and algorithms have been proposed to address the protein structure prediction problem. However, the problem still remains challenging because of the complexity and high dimensionality of a protein conformational search space. This work presents a new computational strategy for the 3-D protein structure prediction problem. A first principle strategy which uses database information for the prediction of the 3-D structure of polypeptides was developed. The proposed technique manipulates structural information from the PDB in order to generate torsion angles intervals. Torsion angles intervals are used as input to a genetic algorithm with a local-search operator in order to search the protein conformational space and predict its 3-D structure. Results show that the 3-D structures obtained by the proposed method were topologically comparable to their correspondent experimental structure.

Page generated in 0.1489 seconds