Spelling suggestions: "subject:"316L stainless steel"" "subject:"316L tainless steel""
1 |
Experimental and Computational Micromechanics of Aluminum Cerium Alloys and Selective Laser Melted 316L Stainless SteelLane, Ryan Jeffrey 07 June 2023 (has links)
Over time science has provided us with new materials and fabrication techniques making it possible to design and create more complex engineering components for service. If we are to include these materials in damage tolerant design efforts, engineers need to understand when/where degradation will occur in the engineering component. To do so it is imperative that micromechanical studies be conducted to understand the material behavior of the microstructural features including phases, build pattern features, and microstructural imperfections including cracks of new materials to validate any future modeling efforts. This dissertation will discuss the experimental and computational micromechanics of extruded and cast aluminum cerium alloys and selective laser melted 316L stainless steel.
In Chapters 2 and 3, micromechanical experiments and computational efforts are carried out on extruded 52:1 Al-8Ce-10Mg alloy. Using in-situ scanning electron microscopy tensile testing microcracking is observed in Al11Ce3 intermetallic after yield in the bulk alloy.
In-situ digital image correlation tests observe the load sharing characteristics between the Al(Mg) matrix and the Al11Ce3 intermetallic before and after microcracking. Finally, that failure process is determined to be coalesce of microvoids leading to ductile damage failure.
These results are used to create an experimental-computational framework to develop a crystal plasticity finite element model for extruded Al-8Ce-10Mg alloys. The calibrated model is used to perform multiple simulations evaluate the possible effect changes intermetallic content and grain orientation texture have on the mechanical strength of the alloy. The experimental and computational framework are expandable to other material systems not just Al-Ce alloys.
In Chapter 4, in-situ scanning electron microscopy tensile testing is used to investigate how the matrix and intermetallic phases contribute to the failure behavior alloy of cast Al-11Ce- 0.4Mg alloy. The in-situ tests shows that after multiple points of crack nucleation, crack coalescence causes the subsequent failure to occur in the Al(Mg) matrix phase of the alloy, as seen by tortuous behavior. The cause of this crack behavior is determined to be due to the high strength match between the matrix and intermetallic phase, strong metallurgical bond between the two phases, and the size effect created by large eutectic colonies created during casting. The results of the experimental work are used to propose a 3D multiscale computational model of cast Al-Ce alloys.
In Chapter 5, micromechanical experiments are carried out on SLM 316L Stainless Steel with four different sets of varied processing parameters. Discontinuous yielding is observed in the lowest energy density sample caused by the strong [110] texture, optimal for dislocation slip, in the loading direction. The in-situ loading experiments are also able to capture the melt pool track deformation and crack formation that leads to the failure of these samples.
This highlights the importance of micromechanical experiments for additive manufactured materials. / Doctor of Philosophy / As time has progressed new materials have been discovered that make it possible to design more complex parts for engineering design. To ensure the safety and reliability of these materials, engineers need to understand when/where damage will occur in a design. Micromechanical studies conducted at magnifications higher than human visible range allow engineers to explore where damage in materials initiates which would otherwise not be detected until after failure. The results of these studies can be used to build and test models of these materials. This dissertation will discuss the micromechanical studies of extruded and cast aluminum cerium alloys and selective laser melted 316L stainless steel.
In Chapters 2 and 3, micromechanical experiments and computational techniques are performed on extruded Al-Ce alloys. In Chapter 4, the failure behavior of cast Al-Ce alloys is examined in active tension using scanning electron microscopy. Finally, in Chapter 5, selective laser melted 316L stainless steel is studied and the results highlight the importance of micromechanical experiments for the new age of metal 3D printing.
|
2 |
Enhanced sintering and mechanical properties of 316L stainless steel with silicon additions sintering aidYouseffi, Mansour, Chong, K.Y., Jeyacheya, F.M. January 2002 (has links)
No / Alpha phase sintering, sinter hardening, and mechanical properties of prealloyed Fe-1·5Mo base powder with and without additions of elemental Si, ferrosilicon, and carbon under various process conditions have been investigated. Liquid paraffin, as a new lubricating agent, was found to be useful in reducing segregation, interparticle and die wall frictions, as well as reducing ejection forces and die and tool wear. It was found that addition of Si to the base powder enhanced the sintering process by stabilisation of the alpha-phase and formation of two kinds of liquid phase at ~1045 and ~1180°C, corresponding to the solidus and liquidus temperatures, respectively. This addition increased the tensile strength of the as sintered Fe-1·5Mo from 174 to 445MPa owing to massive solid solution strengthening effect of Si. An optimum sinter hardenable alloy, of composition Fe-1·5Mo + 3Si + 1·2C, provided a high sintered density of 7·55g cm-3, tensile and bend strengths of7 64 and 1405MPa, respectively, with 2·5% elongation, after sintering at 1250°C for 1h under hydrogen or vacuum using moderate cooling rates of le20K min-1. Faster cooling rates caused brittleness and very low UTS for the high carbon steel. Full heat treatment improved the UTS by ~200MPa which was useful only for the high carbon steel with high cooling rates ge30K min-1. Depending on the cooling rate, the as sintered microstructures consisted of mainly fine or coarse pearlite, bainite, martensite, and some retained austenite with hardness in the range 250-720HV10. Some proeutectoid grain boundary cementites were also present in the as sintered high carbon steel. This work, therefore, has shown that high densities with acceptable microstructures and good mechanical properties are achievable with single stage compaction and single sintering operations by using the optimum process conditions and alloying composition without the need for a post-sintering heat treatment.
|
3 |
SLM 125 Single Track and Density Cube Characterization for 316L Stainless SteelGoss, Cullen 01 June 2019 (has links)
Selective Laser Melting is a rapidly developing additive manufacturing technique that can be used to create unique metal parts with tailormade properties not possible using traditional manufacturing. To understand the process from a most basic level, this study investigates system capabilities when melting single tracks of material. Individual tracks allow for a wide range of scan speeds and laser powers to be utilized and the melt pools analyzed. I discuss how existing studies and simulations can be used to narrow down the selection of potentially successful parameter combinations as well as the limitations of interpretation for single track information. Once we attain a solid understanding of what parameters perform well at a bead level, we can move onto looking at complete 3D parts. A challenge we have faced is creating near fully dense parts and determining a reliable density measurement technique that is accessible for operators at our university. Our results show that the previously determined optimized scan speed and laser power can consistently create parts with >99.5% density over a range of sizes using an analysis method utilizing readily available equipment and software.
|
4 |
The Effects of Weld Thermal Cycles on Additively Manufactured 316L Stainless SteelYamanaka, Hajime 01 June 2019 (has links) (PDF)
To address the size limitation of the powder bed fusion system in additive manufacturing, the welding properties of 316L stainless steel manufactured by SLM 125HL are investigated by conducting hot ductility test and nil strength temperature (NST) test with a physical thermal mechanical simulator, Gleeble. In this study, the print orientations (Zdirection and XY-direction) and the laser patterns (stripe and checker board) are studied. In NST test, the orientation showed a statistical significance in NST: Z-direction was 1384°C and XY-direction was 1400°C. In hot ductility test, all of ductility curves show similar behaviors: hardening region, recrystallization region, and liquation region. The additively manufactured 316L shows poor ductility compared to wrought 316L stainless steel. Also, there is a noticeable difference in ductility between laser pattern. Finally, ductility after the thermal cycle shows higher than that before the thermal cycle. For the future recommendation, investigation on the interelayer temperatures and sigma phase determination should be conducted to confirm the hypotheses to explain the phenomena observed in this study.
|
5 |
MODELING AND TESTING OF THE INTERFACIAL STRESS STATE OF A 316L STAINLESS STEEL CLAD TUNGSTEN COMPOSITE USING PUSH-OUT TESTINGRUTHERFORD, ROBERT WESLEY 11 October 2001 (has links)
No description available.
|
6 |
Rôle de la force ionique, de l'albumine et du pH sur la dégradation par fretting-corrosion d'un contact acier inoxydable/PMMA. Application aux implants orthopédiques. / Role of the ionic strength, albumin and pH on the degradation by fretting-corrosion of a stainless steel/PMMA contact. Application to orthopedic implants.Pellier, Julie 17 January 2012 (has links)
La dégradation par fretting-corrosion des prothèses de hanche cimentées est l’une des principales causes de réintervention chirurgicale. L’étude du fretting-corrosion est effectuée entre un acier inoxydable 316L, matériau utilisé pour les tiges fémorales, et un polymère PMMA, matériau modèle du ciment chirurgical, dans différentes solutions, plus ou moins proches du liquide physiologique.L’étude a d'abord été réalisée à potentiel libre (OCP) pour être proche des conditions in vivo. L’influence des chlorures et le rôle de l’albumine, principale protéine du liquide physiologique, sur la dégradation du 316L et de sa couche passive sont ainsi évalués.Pour pouvoir obtenir des informations sur le courant de corrosion, des essais sont effectués à potentiel imposé. Le potentiel choisi est proche de la valeur de potentiel pendant fretting : E = -400 mV(ECS). Ce potentiel permet d’observer la transition entre courant cathodique et courant anodique en fonction de la force ionique. Lors d’un essai de fretting-corrosion, l’albumine joue le rôle d’inhibiteur de corrosion.La dégradation du 316L par fretting-corrosion est une combinaison entre l’usure corrosive, due au milieu physiologique contenant des chlorures, et l’usure mécanique. Il existe un terme de synergie entre usures corrosive et mécanique. L’influence de la force ionique et de l’albumine sur ce terme de synergie est aussi quantifiée.La forme de la trace d’usure en “W”, caractéristique du fretting-corrosion, est due à un gradient de pH et à un mécanisme de corrosion proche de la corrosion caverneuse. Une étude à pH global imposé a permis d’estimer les valeurs probables de pH dans et à une courte distance de la zone d’usure. / In case of total hip joint cemented prosthesis, one of the most important causes of reintervention is the degradation induced by fretting-corrosion. The study of fretting-corrosion mechanism is conducted between a 316L stainless steel, the same material as the femoral stem, and a polymer PMMA, a model material for bone cement, in several solutions, more or less close to physiological liquid.First, the study was investigated at Open Circuit Potential (OCP), to be close to the in vivo conditions. The influence of chlorides and the role of albumin, the principal protein in the physiological liquid, on the 316L and its passive layer degradation are evaluated.To obtain some information on corrosion current, experiments are investigated at applied potential. The chosen potential is close to the value of the potential during fretting: E = -400 mV(SCE). Besides, this potential is a threshold potential for anodic and cathodic transition of current as a function of ionic strength. One of the key points is the role of albumin as a corrosion inhibitor in the degradation by fretting-corrosion.The 316L degradation by fretting-corrosion is a combination between corrosive wear, due to the physiological liquid which contains chlorides, and mechanical wear. There is a synergy term between corrosive and mechanical wears. The influence of ionic strength and albumin concentration on this synergy term is also quantified.The shape of the worn area in “W”, typical of fretting-corrosion, is due to a pH gradient and a corrosion mechanism close to crevice corrosion. A study where the global pH of the solution is fixed allows estimating values of pH in and at a short distance from the worn area.
|
7 |
Microdrilling of Biocompatible MaterialsMohanty, Sankalp 2011 December 1900 (has links)
This research studies microdrilling of biocompatible materials including commercially pure titanium, 316L stainless steel, polyether ether ketone (PEEK) and aluminum 6061-T6. A microdrilling technique that uses progressive pecking and micromist coolant is developed that allows drilling of 127 micrometers diameter microholes with an aspect ratio of 10:1. The drilling parameters, dominant wear pattern, hole positioning accuracy and effect of AlTiN tool coating are experimentally determined. The experimental data trend agrees with classical Taylor's machining equation. Despite of fragile and long microdrills, the progressive pecking cycle and micromist allowed deep hole drilling on all the tested materials. Drill wear is more pronounced at outer cutting edge due to higher cutting speeds. However, when drilling 316L stainless steel attrition wear at chisel edge is dominant. Hole quality degradation due to formation of built up edge at the drill tip is observed. Coated drill improves tool life by 122% and enhances hole quality when drilling 316L stainless steel. The hole positioning accuracy is improved by 115% and total hole diameter variation decreased from 0.11% to 0.003% per mm of drilling distance.
|
8 |
Process Planning for Hybrid Manufacturing with Directed Energy Deposition and Machining ProcessingHughes, Zane Weldon 12 1900 (has links)
This thesis details the creation and application of a generalized process plan for the hybrid manufacturing of AISI 316L stainless steel, using direct energy deposition (DED) and ball-nose end-mill machining, that includes the inspection and measurement of objects created by that hybrid manufacturing process plan. The proposed process plan progresses through the selection of substrate thickness, single-track, multi-track, and multi-layer depositions, then on to machining processing. A manufacturers' recommended set and range of DED parameters were used to create a designed experiment that aided in the analysis of objects created in each of the DED process planning steps; those objects were then machined in the same enclosure using a set of machining parameters screened from industry recommendations for ball-nose milling of stainless steel, after which measurements were taken for surface roughness, some material characteristics, and for tool deterioration. The results, analyses, and discussions collected herein show that the proposed process plan can provide models for geometrical outputs for each step in the plan, some improvements in substrate stability, surface roughness, tool deterioration, and material porosity due to voids. Current research in hybrid manufacturing does not show generalized process planning influences. The process plan as demonstrated by the work in this thesis will help operators, designers, and researchers in the future by defining a generalized workflow that can be applied to other materials used in hybrid manufacturing.
|
9 |
Influence de la microstructure sur les mécanismes d'endommagement thermomécanique de revêtements à base d'acier inoxydable AISI 316L réalisés par projection dynamique par gaz froid "cold spray" / Influence of microstructure on thermomechanical damage mechanisms in cold-sprayed 316L-matrix composite coatingsMaestracci, Raphaël 06 April 2016 (has links)
Le domaine automobile utilise des alliages légers d’aluminium dans la fabrication des pièces volumineuses du moteur thermique afin d’améliorer son rendement énergétique. Cependant, leurs propriétés sont insuffisantes pour pouvoir faire face aux contraintes thermomécaniques du moteur en service qui requièrent des matériaux à haute performance. Une solution innovante est l’application d’un revêtement par projection par gaz froid dite « cold spray » à base d’acier inoxydable AISI 316L aux dimensions et aux propriétés adaptées aux sollicitations locales. Ce procédé repose sur la projection à haute vitesse de particules de poudre sur un substrat, qui, déformées en « splats » à l’impact, adhérent pour créer un revêtement. Cette étude a pour ambition de comprendre les mécanismes d’endommagement thermomécanique de revêtements cold spray composites à base de 316L. Pour cela, les étapes de l’élaboration des revêtements, les paramètres de projection et les poudres de l’étude sont détaillés. Des revêtements de 316L pur sont réalisés ainsi que des analyses microstructurales par microscopie optique, MEB, chimiques par EDX et cristallographiques par EBSD et DRX, afin d’étudier l’influence du procédé cold spray sur la poudre initiale. Les interfaces entre les splats, constituants majeurs dans la cohésion des revêtements, sont étudiées en détail au MET. Puis, des éléments d’addition moins durs de cuivre et plus durs d’alliage de nickel Tribaloy 700 (Ni700), sont incorporés dans les mélanges de poudres avec l’acier afin de créer des revêtements composites. La modification de la microstructure et de la qualité des interfaces par la création de matériaux composites est alors abordée. Enfin, ces matériaux sont éprouvés et comparés grâce à des essais quasi statiques de dureté et de traction, et dynamiques d’impact-glissement. Les résultats et les observations locales de la réponse de la microstructure à ces sollicitations macroscopiques permettront d’envisager les mécanismes d’endommagement de ces revêtements cold spray. / Aluminum alloys are commonly used in the automotive industry for lightening and power gain of thermal engines. However, thermomechanical properties are not often high enough to undergo the in-service stresses while the engine is running. High performance materials are needed. A novel approach to reach these high performances is to develop specific coatings using the cold spray route. This thermal spray process is based on the plastic deformation of sprayed powders at a supersonic velocity onto a substrate resulting in so called « splats » and stick to the surface. In this thesis, thermomechanical damage of cold-sprayed 316L-matrix composite coatings are studied. Prior to the study of composites, the elaboration steps of 316L in the cold spray coatings are established. Powder and coatings are studied to determine the influence of the cold spray process. Microstructural analyse involved optical microscopy, SEM, chemical analysis EDX and image analysis. Cristallographic analyse were performed by EBSD and DRX. Interfaces between splats are specifically studies by TEM. These consist of a crucial actor in the cohesion of coatings. Then, softer powder of Cu and harder powder of Ni700 are mixed with 316L and cold sprayed to build composite coatings. Their influence on the microstructure through the creation of new interfaces is observed. Last but not least, mechanical properties of the different coatings are compared. Hardness and tensile tests are used for quasi-static loading characterization whereas impact-sliding tests are used for dynamic loading characterization. Results and the local observation of the microstructural response to these macroscopic loadings give an insight into major damage mechanisms of cold sprayed composite coatings.
|
10 |
Conformação de pó de aço inoxidável através do processo de injeção à baixa pressão / The low pressure injection molding of stainless steel metallic powderIkegami, Rogério Akihide 15 September 2000 (has links)
Metalurgia do pó é o uso de metais na forma de pó para a manufatura de produtos. Pós metálicos são combinados (misturados) e compactados em um molde. O material compactado recebe um tratamento térmico ou é sinterizado em um ambiente controlado para a união das partículas para formar um produto denso e resistente. Injeção de pós metálicos tem se destacado mundialmente na produção de componentes de pequenas dimensões e formas complexas em substituição a fundição sob pressão e a sinterização convencional. Atualmente a injeção de pós metálicos está se tornando uma opção competitiva relativamente à peças fundidas, forjadas, usinadas e estampadas. O presente trabalho revisa as técnicas de injeção de pós metálicos e aplica o processo de injeção à baixa pressão utilizando pó de aço inoxidável 316L com granulometria fina (15 μm). Os produtos injetados, uma vez extraídos o VO e sinterizados, foram submetidos à ensaios de tração, dureza e micrográficos. Os resultados obtidos são apresentados e discutidos. O trabalho, para a sua viabilização, incluiu a reforma de uma injetora de bancada à baixa pressão e a construção de moldes de injeção. / Powder metallurgy is the use of metals in the powder form for the manufacture of products. Metallic powders are combined (mixed) and compacted in a die. The compacted material receives a thermal treatment or it is sintered in an controlled atmosphere for the particle binding to form a dense and resistant product. lnjection of metallic powders has if globally highlighted in the production of components of small dimensions and complex forms in substitution the pressure casting and the conventional sintering. Nowadays the injection of metallic powders is becoming relatively a competitive option than casting, forging, machining and stamping. The present work revises the techniques of injection of metallic powders and it applies the injection process to the low pressure using powder of stainless steel 316L with fine granulation (15 μm). The injected products, once debinded and sintered, were submitted to tensile test, hardness and micrography. The results are presented and discussed. In this work, included the reform of a low pressure injection machine and construction of injection dies.
|
Page generated in 0.0676 seconds