Spelling suggestions: "subject:"323like protease"" "subject:"340like protease""
1 |
3C-like protease inhibitors against coronavirusesPerera, Krishani January 1900 (has links)
Master of Science in Biomedical Sciences / Department of Diagnostic Medicine/Pathobiology / Yunjeong Kim / Coronaviruses are pathogens that cause diverse diseases in humans and animals. The studies in this dissertation are focused on feline coronavirus (FCoV), ferret coronavirus (FRCoV) and mink coronavirus (MCoV). FCoV and FRCoV infections typically cause enteritis in cats and ferrets, respectively. However, a 100% fatal systemic disease called feline infectious peritonitis (FIP) can develop in some FCoV infected cats and a fatal systemic disease resembling FIP can develop in some FRCoV infected ferrets. MCoV causes enteritis which results in significant economic loss to mink farmers. No effective vaccine or treatment is available despite the increasing importance of these viral diseases. We have previously reported the synthesis of inhibitors against 3C-like protease (3CLpro) of FCoV and demonstrated the antiviral efficacy of a 3CLpro inhibitor for treating FIP. FRCoV and MCoV 3CLpro are closely related to FCoV 3CLpro. Therefore, we investigated the structure-function relationships of our 3CLpro inhibitors to identify the struc-tural requirements of inhibitors for FRCoV and MCoV. This is the first report of antiviral com-pounds against FRCoV and MCoV. We have previously conducted a field trial with a potent 3CLpro inhibitor, GC376, in cats with naturally occurring FIP. Comparison of the FCoV 3CLpro amino acid sequences from the pre- and post-treatment samples in one cat showed amino acid changes in 3CLpro. Hence, we generated recombinant 3CLpros carrying the amino acid changes and characterized the effects of these amino acid changes in FCoV 3CLpro on its susceptibility to GC376. We observed that these amino acid changes did not markedly affect the activity of GC376 in fluorescence resonance energy transfer (FRET) assay, explaining the absence of clinical drug resistance in this cat during the field trial.
|
2 |
Synthesis and anti-viral activity of novel tripeptidyl compounds, modification of graphene oxides, and synthesis of peptidyl substrates for use in an electrochemical biosensor devicePrior, Allan Mark January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Duy H. Hua / Three research projects are described in this dissertation and they consist of the discovery of norovirus protease inhibitors, modification of graphene oxides (GO) for the detection of norovirus, and design and fabrication of nanoelectronic device based on nanocarbon fibers for the detection of breast cancer proteases, legumain and cathepsin B.
A novel class of tripeptidyl anti-noroviral compounds which strongly inhibit NV3CL[superscript]pro in enzyme and cell based assays was discovered. An example of one of the most active compounds is (1-{3-methyl-1-[2-oxo-1-(2-oxo-pyrrolidin-3-ylmethyl)-ethylcarbamoyl]-butylcarbamoyl}-2-naphthalen-1-yl-ethyl)-carbamic acid benzyl ester, which showed an IC₅₀ value of 0.14 ± 0.2 μM (enzyme assay) and EC₅₀ value of 0.04 ± 0.02 μM (cell based assay). This compound has an aldehyde warhead, a P1 glutamine surrogate, a P2 leucine, a P3 L-1-napthylalanine and an N-terminal carboxybenzyl cap. The corresponding bisulfite adduct, 2-[2-(2-benzyloxycarbonylamino-3-naphthalen-1-yl-propionylamino)-4-methyl-pentanoylamino]-1-hydroxy-3-(2-oxo-pyrrolidin-3-yl)-propane-1-sulfonic acid monosodium salt, has a comparable activity in enzyme and cell based assays (IC₅₀ 0.24 ± 0.1 μM; EC₅₀ 0.04 ± 0.03 μM). (1-{3-methyl-1-[2-oxo-1-(2-oxo-pyrrolidin-3-ylmethyl)-ethylcarbamoyl]-butylcarbamoyl}-2-naphthalen-1-yl-ethyl)-carbamic acid benzyl ester and its ketoamide derivative, (1-{1-[2-isopropylcarbamoyl-2-oxo-1-(2-oxo-pyrrolidin-3-ylmethyl)-ethylcarbamoyl]-3-methyl-butylcarbamoyl}-2-naphthalen-1-yl-ethyl)-carbamic acid benzyl ester, exhibited very good broad spectrum anti-viral activity, especially in human rhino virus and severe acute respiratory syndrome bioassays.
We demonstrated that the surface of graphene oxide can be chemically modified with t-butylester and carboxylic acid functionalities. Fourier transform infrared spectroscopy, Raman spectroscopy and solid state nuclear magnetic resonance spectroscopy confirmed the presence of t-butylester and carboxylic acid functional groups. One sided oligonucleotide functionalized graphene oxide was synthesized using a solid state technique. A carboxylic acid functionalized graphene oxide was deposited onto the surface of electronic chips to bridge two gold electrodes, using a direct deposition technique. The carboxylic acid functionalized graphene oxide displayed semi-conductive properties and its use in an electronic biosensor device to detect noroviral RNA was investigated.
Novel redox-active protease substrate peptides H₂N-(CH₂)₄CO-Ala-Ala-Asn-Leu-NHCH₂-ferrocene and H₂N-(CH₂)₄CO-Leu-Arg-Phe-Gly-NHCH₂-ferrocene were synthesized successfully and used in an alternating current voltammetry technique to facilitate the detection of the cancer related protease enzymes legumain and cathepsin B. After attachment of these peptides to the tips of carbon nanofiber nanoelectrode arrays, the presence of active protease enzymes could be detected as manifest by an exponential decay in current signal detect when monitored by alternating current voltammetry, at initial enzyme concentrations of 80.1 nM (legumain) and 30.7 nM (cathepsin B). The peptide cleavage sites were confirmed by analyses of the cleaved fragments using high performance liquid chromatography and mass spectrometry. Results showed that the cleavage of H₂N-(CH₂)₄CO-Ala-Ala-Asn-Leu-NHCH₂-ferrocene at the C-terminal side of asparagine residues by legumain and cleavage of H₂N-(CH₂)₄CO-Leu-Arg-Phe-Gly-NHCH₂-ferrocene at the C-terminal side of arginine residues by cathepsin B. Legumain exhibited a specificity constant (k[subscript]cat/K[subscript]m) of 11.3 x 10ᶟ M⁻¹S⁻¹ while cathepsin B exhibited a higher value of specificity constant (4.3 x 10⁴ M⁻¹S⁻¹) which agreed with the values obtained from fluorescence enzyme assay.
|
Page generated in 0.0641 seconds