Spelling suggestions: "subject:"3D display"" "subject:"3D isplay""
1 |
Three dimensional television : an investigation concerning programmable parallax barriersSexton, Ian January 1996 (has links)
No description available.
|
2 |
Head tracked multi user autostereoscopic 3D display investigationsBrar, Rajwinder Singh January 2012 (has links)
The research covered in this thesis encompasses a consideration of 3D television requirements and a survey of stereoscopic and autostereoscopic methods. This confirms that although there is a lot of activity in this area, very little of this work could be considered suitable for television. The principle of operation, design of the components of the optical system and evaluation of two EU-funded (MUTED & HELIUM3D projects) glasses-free (autostereoscopic) displays is described. Four iterations of the display were built in MUTED, with the results of the first used in designing the second, third and fourth versions. The first three versions of the display use two-49 element arrays, one for the left eye and one for the right. A pattern of spots is projected onto the back of the arrays and these are converted into a series of collimated beams that form exit pupils after passing through the LCD. An exit pupil is a region in the viewing field where either a left or a right image is seen across the complete area of the screen; the positions of these are controlled by a multi-user head tracker. A laser projector was used in the first two versions and, although this projector operated on holographic principles in order to obtain the spot pattern required to produce the exit pupils, it should be noted that images seen by the viewers are not produced holographically so the overall display cannot be described as holographic. In the third version, the laser projector is replaced with a conventional LCOS projector to address the stability and brightness issues discovered in the second version. In 2009, true 120Hz displays became available; this led to the development of a fourth version of the MUTED display that uses 120Hz projector and LCD to overcome the problems of projector instability, produces full-resolution images and simplifies the display hardware. HELIUM3D: A multi-user autostereoscopic display based on laser scanning is also described in this thesis. This display also operates by providing head-tracked exit pupils. It incorporates a red, green and blue (RGB) laser illumination source that illuminates a light engine. Light directions are controlled by a spatial light modulator and are directed to the users’ eyes via a front screen assembly incorporating a novel Gabor superlens. In this work is described that covered the development of demonstrators that showed the principle of temporal multiplexing and a version of the final display that had limited functionality; the reason for this was the delivery of components required for a display with full functionality.
|
3 |
3D augmented reality with integral imaging displayShen, Xin, Hua, Hong, Javidi, Bahram 01 June 2016 (has links)
In this paper, a three-dimensional (3D) integral imaging display for augmented reality is presented. By implementing the pseudoscopic-to-orthoscopic conversion method, elemental image arrays with different capturing parameters can be transferred into the identical format for 3D display. With the proposed merging algorithm, a new set of elemental images for augmented reality display is generated. The newly generated elemental images contain both the virtual objects and real world scene with desired depth information and transparency parameters. The experimental results indicate the feasibility of the proposed 3D augmented reality with integral imaging.
|
4 |
Geometry and Fluence Effects on Photorefractive Polymer Devices for HolographyLynn, Brittany January 2015 (has links)
This work presents the recent advances in photorefractive polymers for use in updatable holographic displays. A model with which to predict the effect of coplanar electrode geometry on diffraction uniformity in photorefractive (PR) polymer display devices was developed. Assumptions made in the standard use cases with constant electric field throughout the bulk of the media are no longer valid in the regions of extreme electric fields present in this type of device. Using electric field induced second harmonic generation (EFISHG) observed with multiphoton microscopy, the physical response in regions of internal electric fields which fall outside the standard regimes of validity were probed. Adjustments to the standard model were made, and the results of the new model were corroborated by holographic four-wave mixing measurements. The recent development of a single mode fiber-based pulsed laser with variable pulse length, energy, and repetition rate has enabled the characterization of photorefractive devices in a previously inaccessible regime located between millisecond and nanosecond pulse recording. A pulse width range of nine orders of magnitude opens the door to device and supporting laser optimization for use in video-rate holographic display. Device optimization has resulted in 5x improvement in single pulse four-wave mixing diffraction efficiencies to 10 - 11.5 % at pulse widths ranging between 6 ns and 100 µs. The grating recording time was likewise reduced by 5x to 16 ms at an applied bias of 72.5 V/μm. These improvements support 30 Hz update rates, which combined with the 3.3 - 10 kHz repetition rate pulsed laser, pave the way for real-time updatable holographic display.
|
5 |
Development Of The Depth-Fused Multi-Focal-Plane Display TechnologyHu, Xinda January 2014 (has links)
Conventional stereoscopic displays present a pair of stereoscopic images on a single and fixed image plane. In consequence, these displays lack the capability of correctly rendering focus cues (i.e. accommodation and retinal blur) and may induce the discrepancy between accommodation and convergence. A number of visual artifacts associated with incorrect focus cues in stereoscopic displays have been reported, limiting the applicability of these displays for demanding applications and daily usage. Depth-fused multi-focal-plane display was proposed to create a fixed-viewpoint volumetric display capable of rendering correct or nearly-correct focus cues in a stereoscopic display through a small number of discretely placed focal planes. It effectively addresses the negative effects of conventional stereoscopic displays on depth perception accuracy and visual fatigue. In this dissertation, the fundamental design methods and considerations of depth-fused displays were refined and extended based on previous works and a high-resolution optical see-through multi-focal-plane head-mounted display enabled by state-of-the-art freeform optics was developed. The prototype system is capable of rendering nearly-correct focus cues for a large volume of 3D space extending into a depth range from 0 to 3 diopters at flicker-free speed. By incorporating freeform optics, the prototype not only achieves high quality imagery across a large 3D volume for the virtual display path but it also maintains better than 0.5 arcminutes visual resolution of the see-through view. The optical design, implementation and experimental validation of the display are presented and discussed in detail.
|
6 |
Improvements in Optical Trap DisplaysRogers, R. Wesley 26 August 2020 (has links)
This thesis improves on the design of the Optical Trap Display (OTD), presented in 2018 [1]. Contributions include: real time animation; single beam, multiparticle suspension, point primitive anisotropic scattering, and virtual image approximation. First, real time animation was demonstrated on the OTD for the first time in full color at up to 30Hz refresh. Second, multi-particle systems allow for scaling of the display by a multiplicative factor, potentially up to orders of magnitude greater than the first OTD. Third, anisotropic scattering of point primitives was shown for individual suspended particles and multiple simultaneously suspended particles. Fourth, virtual images have been previously considered impossible in volumetric displays but by using perspective projections we have shown in simulation and experiment for the first time that an effect similar to a virtual image can be created.
|
7 |
Mechanisms for the reciprocity failure in photorefractive polymersBlanche, Pierre-Alexandre, Lynn, Brittany, Norwood, Robert A., Peyghambarian, Nasser 23 September 2016 (has links)
We measured the diffraction efficiency response of two photorefractive polymer devices according to the duration of the single laser pulse used to record the hologram. The pulse duration was varied from 6 nanoseconds to 1 second, while the pulse energy density was maintained constant at 30 mJ/cm(2). This changed the peak power from 5 x 10(9) mW to 30 mW. We observed a strong reciprocity failure of the efficiency according to the pulse duration, with a reduction as large as a factor 35 between 1 second and 30 mu s pulse duration. At even lower pulse duration (< 30 mu s), the efficiency leveled out and remained constant down to the nanosecond exposure time. The same behavior was observed for samples composed of the same material but with and without buffer layers deposited on the electrodes, and different voltages applied during the holographic recording. We explained these experimental results based on the charge transport mechanism involved in the photorefractive process. The plateau is attributed to the single excitation of the charge carriers by short pulses (T-p < 30 mu s). The increase of efficiency for longer pulse duration (T-p > 30 mu s) is explained by multiple excitations of the charge carriers that allows longer distance to be traveled from the excitation sites. This longer separation distance between the carriers increases the amplitude of the space-charge field, and improves the index modulation. The understanding of the response of the diffraction efficiency according to the pulse duration is particularly important for the optimization of photorefractive materials to be used at high refresh rate such as in videorate 3D display.
|
8 |
Orbital angular momentum encoding/decoding of 2D images for scalable multiview colour displaysChu, Jiaqi January 2018 (has links)
Three-dimensional (3D) displays project 3D images that give 3D perceptions and mimic real-world objects. Among the rich varieties of 3D displays, multiview displays take advantage of light’s various degrees of freedom and provide some of the 3D perceptions by projecting 2D subsampling of a 3D object. More 2D subsampling is required to project images with smoother parallax and more realistic sensation. As an additional degree of freedom with theoretically unlimited state space, orbital angular momentum (OAM) modes may be an alternative to the conventional multiview approaches and potentially project more images. This research involves exploring the possibility of encoding/decoding off-axis points in 2D images with OAM modes, development of the optical system, and design and development of a multiview colour display architecture. The first part of the research is exploring encoding/decoding off-axis points with OAM modes. Conventionally OAM modes are used to encode/decode the on-axis information only. Analysis of on-axis OAM beams referenced to off-axis points suggests representation of off-axis displacements as a set of expanded OAM components. At current stage off-axis points within an effective coding area are possible to be encoded/decoded with chosen OAM modes for multiplexing. Experimentally a 2D image is encoded/decoded with an OAM modes. When the encoding/decoding OAM modes match, the image is reconstructed. On the other hand, a dark region with zero intensity is shown. The dark region suggests the effective coding area for multiplexing. The final part of the research develops a multiview colour display. Based on understandings of off-axis representation of a set of different OAM components and experimental test of the optical system, three 1 mm monochromatic images are encoded, multiplexed and projected. Having studied wavelength effects on OAM coding, the initial architecture is updated to a scalable colour display consisting of four wavelengths.
|
9 |
3D Teleconferencing : The construction of a fully functional, novel 3D Teleconferencing system / 3D Telekonferens : Konstruktionen av ett nytt, operativt 3D TeleconferanssystemLång, Magnus January 2009 (has links)
<p>This report summarizes the work done to develop a 3D teleconferencing system, which enables remote participants anywhere in the world to be scanned in 3D, transmitted and displayed on a constructed 3D display with correct vertical and horizontal parallax, correct eye contact and eye gaze. The main focus of this report is the development of this system and especially how to in an efficient and general manner render to the novel 3D display. The 3D display is built out of modified commodity hardware and show a 3D scene for observers in up to 360 degrees around it and all heights. The result is a fully working 3D Teleconferencing system, resembling communication envisioned in movies such as holograms from Star Wars. The system transmits over the internet, at similar bandwidth requirements as concurrent 2D videoconferencing systems.</p> / Project done at USC Institute for Creative Technologies, LA, USA. Presented at SIGGRAPH09.
|
10 |
DEVELOPMENT AND ASSESSMENT OF POLARIZED HEAD MOUNTED PROJECTION DISPLAYSZhang, Rui January 2010 (has links)
Head mounted projection display (HMPD) technology, as an alternative to conventional head mounted displays (HMD), offers a potential of designing wide field-of-view (FOV), low distortion optical see-through HMDs (OST-HMDs). Existing HMPD designs, however, suffer from problems of low luminance and low image resolution, which limits the applications of such information displays for the scenarios which require high luminance and high image fidelity. The design of a polarized head mounted projection display (p-HMPD) was recently proposed to overcome the challenge of low luminous efficiency in existing HMPD designs. Polarization management was employed to reduce the light loss caused by beamsplitting in an HMPD.The work in this dissertation focuses on the development and evaluation of an SXGA resolution, high efficiency p-HMPD system. The main contributions are as follows. First, the key elements in the polarization management scheme of a p-HMPD were selected and their polarization performances were characterized by measuring their Mueller matrices, based on which the overall display performance of a p-HMPD was analyzed.Second, based on a pair of ferroelectric liquid-crystal-on-silicon (FLCoS) microdisplays, a compact illumination unit and a light-weight projection system were designed, from which a p-HMPD prototype was built. Following the prototype implementation, a series of calibrations were performed to obtain correct color presentation, desired focusing setting, and optical system characteristics necessary for achieving accurate registration between virtual objects and their counterparts in the real world.Third, the imaging properties of a retroreflective screen which is an essential part of a p-HMPD or HMPD were studied and its effects on the image resolution of an HMPD system were further characterized.Finally, the performance of the system was evaluated through two objective user experiments, including a visual acuity assessment and a depth perception accuracy assessment.
|
Page generated in 0.0392 seconds