• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using a 3D finite element forward modeling code to analyze resistive structures with controlled-source electromagnetics in a marine environment

King, Joshua David 17 February 2005 (has links)
Controlled-Source Electromagnetics (CSEM) is a method that has been used since the 1980’s in the marine environment for determining electrical properties of the subsurface. Receivers on the seafloor collect total electric and magnetic fields which are produced as a result of interaction of the transmitter generated primary fields with the seawater and subsurface. Badea et al. (2001) coded an existing algorithm for solving Maxwell’s equations. This finite element 3D forward modeling algorithm is used to simulate CSEM experiments. The objective of the present study is to model the changes in electromagnetic response for a resistive disk and a more geometrically complex structure, which are rough approximations of hydrocarbon reservoirs. The parameters that are varied in studying these subsurface structures are the disk radius, disk depth, the transmitter frequency, the transmitter location, and the structure orientation.The results showed that a disk of finite radius behaves similar to an infinite disk at short range and grades into double half-space behavior at longer ranges. The frequency of the transmitter must be tuned to the disk depth as certain frequencies will penetrate too shallow or too deep to probe the disk. Moving the transmitter away from the receivers causes a decrease in signal strength, but exhibits a greater capacity to distinguish between the double half-space and infinite disk scenarios. The disk was then replaced by a more complex structure. To determine if the 3D nature of the structure may be located a study was undertaken to probe the structure from different perspectives using different transmitter locations and azimuths. It is determined that the 3D nature of the structure could not be observed until the structure’s thickness is sufficiently large.The goal of the study is to better understand the effect of subsurface parameters on the total fields and show the usefulness of the 3D forward modeling code. Understanding the relationships between these parameters and the resulting signals is important in terms of setting up a real experiment. Marine CSEM studies are costly and using a valuable tool such as an accurate finite element 3D forward modeling algorithm may save time and money.
2

Using a 3D finite element forward modeling code to analyze resistive structures with controlled-source electromagnetics in a marine environment

King, Joshua David 17 February 2005 (has links)
Controlled-Source Electromagnetics (CSEM) is a method that has been used since the 1980’s in the marine environment for determining electrical properties of the subsurface. Receivers on the seafloor collect total electric and magnetic fields which are produced as a result of interaction of the transmitter generated primary fields with the seawater and subsurface. Badea et al. (2001) coded an existing algorithm for solving Maxwell’s equations. This finite element 3D forward modeling algorithm is used to simulate CSEM experiments. The objective of the present study is to model the changes in electromagnetic response for a resistive disk and a more geometrically complex structure, which are rough approximations of hydrocarbon reservoirs. The parameters that are varied in studying these subsurface structures are the disk radius, disk depth, the transmitter frequency, the transmitter location, and the structure orientation.The results showed that a disk of finite radius behaves similar to an infinite disk at short range and grades into double half-space behavior at longer ranges. The frequency of the transmitter must be tuned to the disk depth as certain frequencies will penetrate too shallow or too deep to probe the disk. Moving the transmitter away from the receivers causes a decrease in signal strength, but exhibits a greater capacity to distinguish between the double half-space and infinite disk scenarios. The disk was then replaced by a more complex structure. To determine if the 3D nature of the structure may be located a study was undertaken to probe the structure from different perspectives using different transmitter locations and azimuths. It is determined that the 3D nature of the structure could not be observed until the structure’s thickness is sufficiently large.The goal of the study is to better understand the effect of subsurface parameters on the total fields and show the usefulness of the 3D forward modeling code. Understanding the relationships between these parameters and the resulting signals is important in terms of setting up a real experiment. Marine CSEM studies are costly and using a valuable tool such as an accurate finite element 3D forward modeling algorithm may save time and money.
3

Imaging Wetland Hydrogeophysics: Applications of Critical Zone Hydrogeophysics to Better Understand Hydrogeologic Conditions in Coastal and Inland Wetlands and Waters

Downs, Christine Marie 17 November 2017 (has links)
This dissertation consists of three projects utilizing electric and electromagnetic (EM) methods to better understand critical-zone hydrogeologic conditions in select Florida wetlands and waters. First, a time-lapse electrical resistivity (ER) survey was conducted in section of mangrove forest on a barrier island in southeast Florida to image changes in pore-water salinity in the root zone. ER data show the most variability in the root zone over a 24-hour period, and, generally, the ground is more resistive during the day than overnight. Second, a suite of three-dimensional forward models, based on varying lateral boundaries and conductivities typical of a coastal wetland, were run to simulate the EM response of a commerical electromagnetic induction instrument crossing over said boundaries. Normalized profiles show the transition is sharper in a hypersaline regime than one where freshwater and clay are present. Furthermore, enough variability exists in hypersaline regimes to justify collecting profile measurements in multiple coil configurations to constrain the nature of a lateral boundary. Also, under certain circumstances, there are kinks in the EMI response even across abrupt boundaries due to concentrated current density at a layer's edge. Lastly, geophysical surveys were conducted at six wetlands in west-central Florida to characterize potential hydrostratigraphic units and compare/contrast them to the current conceptual model for cypress dome wetlands. ER was used to image the geometry of the top of limestone; ground penetrating radar (GPR) was used to image stratigraphy beneath and surrounding wetlands. These wetlands can be grouped into two models. Topographic highs surrounding wetlands are controlled by the undulating top of limestone at sites where the region is characterized by limestone ridges. In contrast, topographic highs are controlled by thick sand packages at sites regionally characterized by sand dunes over scoured limestone.

Page generated in 0.4942 seconds