• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Activity-Based Data Fusion for the Automated Progress Tracking of Construction Projects

Shahi, Arash 05 March 2012 (has links)
In recent years, many researchers have investigated automated progress tracking for construction projects. These efforts range from 2D photo-feature extraction to 3D laser scanners and radio frequency identification (RFID) tags. A multi-sensor data fusion model that utilizes multiple sources of information would provide a better alternative than a single-source model for tracking project progress. However, many existing fusion models are based on data fusion at the sensor and object levels and are therefore incapable of capturing critical information regarding a number of activities and processes on a construction site, particularly those related to non-structural trades such as welding, inspection, and installation activities. In this research, a workflow based data fusion framework is developed for construction progress, quality and productivity assessment. The developed model is based on tracking construction activities as well as objects, in contrast to the existing sensor-based models that are focussed on tracking objects. Data sources include high frequency automated technologies including 3D imaging and ultra-wide band (UWB) positioning. Foreman reports, schedule information, and other data sources are included as well. Data fusion and management process workflow implementation via a distributed computing network and archiving using a cloud-based architecture are both illustrated. Validation was achieved using a detailed laboratory experimental program as well as an extensive field implementation project. The field implementation was conducted using five months of data acquired on the University of Waterloo Engineering VI construction project, yielding promising results. The data fusion processes of this research provide more accurate and more reliable progress and earned value estimates for construction project activities, while the developed data management processes enable the secure sharing and management of construction research data with the construction industry stakeholders as well as with researchers from other institutions.
2

Activity-Based Data Fusion for the Automated Progress Tracking of Construction Projects

Shahi, Arash 05 March 2012 (has links)
In recent years, many researchers have investigated automated progress tracking for construction projects. These efforts range from 2D photo-feature extraction to 3D laser scanners and radio frequency identification (RFID) tags. A multi-sensor data fusion model that utilizes multiple sources of information would provide a better alternative than a single-source model for tracking project progress. However, many existing fusion models are based on data fusion at the sensor and object levels and are therefore incapable of capturing critical information regarding a number of activities and processes on a construction site, particularly those related to non-structural trades such as welding, inspection, and installation activities. In this research, a workflow based data fusion framework is developed for construction progress, quality and productivity assessment. The developed model is based on tracking construction activities as well as objects, in contrast to the existing sensor-based models that are focussed on tracking objects. Data sources include high frequency automated technologies including 3D imaging and ultra-wide band (UWB) positioning. Foreman reports, schedule information, and other data sources are included as well. Data fusion and management process workflow implementation via a distributed computing network and archiving using a cloud-based architecture are both illustrated. Validation was achieved using a detailed laboratory experimental program as well as an extensive field implementation project. The field implementation was conducted using five months of data acquired on the University of Waterloo Engineering VI construction project, yielding promising results. The data fusion processes of this research provide more accurate and more reliable progress and earned value estimates for construction project activities, while the developed data management processes enable the secure sharing and management of construction research data with the construction industry stakeholders as well as with researchers from other institutions.
3

The Use of Image and Point Cloud Data in Statistical Process Control

Megahed, Fadel M. 18 April 2012 (has links)
The volume of data acquired in production systems continues to expand. Emerging imaging technologies, such as machine vision systems (MVSs) and 3D surface scanners, diversify the types of data being collected, further pushing data collection beyond discrete dimensional data. These large and diverse datasets increase the challenge of extracting useful information. Unfortunately, industry still relies heavily on traditional quality methods that are limited to fault detection, which fails to consider important diagnostic information needed for process recovery. Modern measurement technologies should spur the transformation of statistical process control (SPC) to provide practitioners with additional diagnostic information. This dissertation focuses on how MVSs and 3D laser scanners can be further utilized to meet that goal. More specifically, this work: 1) reviews image-based control charts while highlighting their advantages and disadvantages; 2) integrates spatiotemporal methods with digital image processing to detect process faults and estimate their location, size, and time of occurrence; and 3) shows how point cloud data (3D laser scans) can be used to detect and locate unknown faults in complex geometries. Overall, the research goal is to create new quality control tools that utilize high density data available in manufacturing environments to generate knowledge that supports decision-making beyond just indicating the existence of a process issue. This allows industrial practitioners to have a rapid process recovery once a process issue has been detected, and consequently reduce the associated downtime. / Ph. D.

Page generated in 0.0619 seconds