Spelling suggestions: "subject:"3D Motion capture"" "subject:"3D Motion apture""
1 |
Heel compliance and walking mechanics using the Niagara Foot ProsthesisWellens, Valérie 15 June 2011
The Niagara Foot (NF) is a relatively new prosthetic design, primarily intended for use in developing countries. It combines low cost and durability with high performance energy return features. The design has been successfully tested mechanically and in field trials, but to date there has been little quantitative gait data describing the performance of the foot. Biomechanical gait analysis techniques will be used to extract quantitative gait measures.
The current study is designed to characterize the effect of heel section stiffness parameter differences between a NF normal heel and a NF with a reduced material heel section., on gait characteristics in persons with unilateral trans-tibial amputations (TTA). Standardized biomechanical gait analysis techniques, adapted for this population, were used to extract quantitative gait measures. Five persons with TTA performed walking tasks while 3D ground reaction forces were recorded via an embedded force platform. A motion capture system also recorded the 3D segmental motion of the lower limbs and torso of each subject. These were combined to calculate net joint moments and mechanical power at the hip and knee of both limbs. These data were compared between a normal NF and a NF with a modified heel. Each participant had a period of two-week adaptation prior to any testing. An EMG system and a prosthesis evaluation questionnaire were used to help analyze the condition. The overall hypothesis of this study was that modification of the heel section stiffness would change several aspects of gait.
Although the gait pattern differences between participants and the low participant number produced no significant differences between the conditions for all variables, trends were observed in multiple outcomes. These results report preliminary evidence that for some participants the heel material reduction does impact their gait by showing a different loading phase during the transition between the heel strike and the full contact with the ground. The NF2 may move the gait toward a more flexed knee position. Furthermore, despite a reduction in the material of the heel section results showed that the overall foot stiffness increased. This may be the result of the one-piece design and mechanics of the NF.
Further investigations with a bigger cohort of people with TTA are required to look at the importance of the impact of the prosthetic foot heel stiffness.
|
2 |
Heel compliance and walking mechanics using the Niagara Foot ProsthesisWellens, Valérie 15 June 2011 (has links)
The Niagara Foot (NF) is a relatively new prosthetic design, primarily intended for use in developing countries. It combines low cost and durability with high performance energy return features. The design has been successfully tested mechanically and in field trials, but to date there has been little quantitative gait data describing the performance of the foot. Biomechanical gait analysis techniques will be used to extract quantitative gait measures.
The current study is designed to characterize the effect of heel section stiffness parameter differences between a NF normal heel and a NF with a reduced material heel section., on gait characteristics in persons with unilateral trans-tibial amputations (TTA). Standardized biomechanical gait analysis techniques, adapted for this population, were used to extract quantitative gait measures. Five persons with TTA performed walking tasks while 3D ground reaction forces were recorded via an embedded force platform. A motion capture system also recorded the 3D segmental motion of the lower limbs and torso of each subject. These were combined to calculate net joint moments and mechanical power at the hip and knee of both limbs. These data were compared between a normal NF and a NF with a modified heel. Each participant had a period of two-week adaptation prior to any testing. An EMG system and a prosthesis evaluation questionnaire were used to help analyze the condition. The overall hypothesis of this study was that modification of the heel section stiffness would change several aspects of gait.
Although the gait pattern differences between participants and the low participant number produced no significant differences between the conditions for all variables, trends were observed in multiple outcomes. These results report preliminary evidence that for some participants the heel material reduction does impact their gait by showing a different loading phase during the transition between the heel strike and the full contact with the ground. The NF2 may move the gait toward a more flexed knee position. Furthermore, despite a reduction in the material of the heel section results showed that the overall foot stiffness increased. This may be the result of the one-piece design and mechanics of the NF.
Further investigations with a bigger cohort of people with TTA are required to look at the importance of the impact of the prosthetic foot heel stiffness.
|
3 |
Validation, optimisation et valorisation de la mesure d'orientation issue de centrales inertielles pour la biomécanique clinique / Validation, optimization and exploitation of orientation measurements issued from inertial systems for clinical biomechanicsLebel, Karina January 2017 (has links)
Les centrales inertielles (triade de capteurs inertiels dont la fusion des données permet l’estimation de l’orientation d’un corps rigide) sont de plus en plus populaires en biomécanique. Toutefois, les qualités métrologiques des centrales inertielles (CI) sont peu documentées et leur capacité à identifier des incapacités liées à la mobilité, sous-évaluée. Objectifs : (i) Caractériser la validité de la mesure d’orientation issue de CI ; (ii) Optimiser la justesse et la fidélité de ces mesures; et (iii) Proposer des métriques de mobilité basées sur les mesures d’orientation issues de CI. Méthodologie et résultats : La validité de la mesure d’orientation de différents types de CI a d’abord été évaluée en conditions contrôlées, à l’aide d’une table motorisée et d’une mesure étalon. Il a ainsi été démontré que les mesures d’orientation issues de CI ont une justesse acceptable lors de mouvements lents (justesse moyenne ≤ 3.1º), mais que cette justesse se dégrade avec l’augmentation de la vitesse de rotation. Afin d’évaluer l’impact de ces constatations en contexte clinique d’évaluation de la mobilité, 20 participants ont porté un vêtement incorporant 17 CI lors de la réalisation de diverses tâches de mobilité (transferts assis-debout, marche, retournements). La comparaison des mesures des CI avec celles d’un système étalon a permis de dresser un portrait descriptif des variations de justesse selon la tâche exécutée et le segment/l’articulation mesuré. À partir de ces constats, l’optimisation de la mesure d’orientation issue de CI est abordée d’un point de vue utilisateur, démontrant le potentiel d’un réseau de neurones artificiel comme outil de rétroaction autonome de la qualité de la mesure d’orientation (sensibilité et spécificité ≥ 83%). Afin d’améliorer la robustesse des mesures de cinématique articulaire aux variations environnementales, l’ajout d’une photo et d’un algorithme d’estimation de pose tridimensionnelle est proposé. Lors d’essais de marche (n=60), la justesse moyenne de l’orientation à la cheville a ainsi été améliorée de 6.7° à 2.8º. Finalement, la caractérisation de la signature de la cinématique tête-tronc pendant une tâche de retournement (variables : angle maximal tête-tronc, amplitude des commandes neuromusculaires) a démontré un bon pouvoir discriminant auprès de participants âgés sains (n=15) et de patients atteints de Parkinson (PD, n=15). Ces métriques ont également démontré une bonne sensibilité au changement, permettant l’identification des différents états de médication des participants PD. Conclusion : Les mesures d’orientation issues de CI ont leur place pour l’évaluation de la mobilité. Toutefois, la portée clinique réelle de ce type de système ne sera atteinte que lorsqu’il sera intégré et validé à même un outil de mesure clinique. / Abstract : Inertial measurement of motion is emerging as an alternative to 3D motion capture systems in biomechanics. Inertial measurement units (IMUs) are composed of accelerometers, gyroscopes and magnetometers which data are fed into a fusion algorithm to determine the orientation of a rigid body in a global reference frame. Although IMUs offer advantages over traditional methods of motion capture, the value of their orientation measurement for biomechanics is not well documented. Objectives: (i) To characterize the validity of the orientation measurement issued from IMUs; (ii) To optimize the validity and the reliability of these measurements; and (iii) To propose mobility metrics based on the orientation measurement obtained from IMUs. Methods and results: The criterion of validity of multiple types of IMUs was characterized using a controlled bench test and a gold standard. Accuracy of orientation measurement was shown to be acceptable under slow conditions of motion (mean accuracy ≤ 3.1º), but it was also demonstrated that an increase in velocity worsens accuracy. The impact of those findings on clinical mobility evaluation was then assessed in the lab, with 20 participants wearing an inertial suit while performing typical mobility tasks (standing-up, walking, turning). Comparison of the assessed IMUs orientation measurements with those from an optical gold standard allowed to capture a portrait of the variation in accuracy across tasks, segments and joints. The optimization process was then approached from a user perspective, first demonstrating the capability of an artificial neural network to autonomously assess the quality of orientation data sequences (sensitivity and specificity ≥ 83%). The issue of joint orientation accuracy in magnetically perturbed environment was also specifically addressed, demonstrating the ability of a 2D photograph coupled with a 3D pose estimation algorithm to improve mean ankle orientation accuracy from 6.7° to 2.8º when walking (n=60 trials). Finally, characterization of the turn cranio-caudal kinematics signature (variables: maximum head to trunk angle and neuromuscular commands amplitude) has demonstrated a good ability to discriminate between healthy older adults (n=15) and early stages of Parkinson’s disease patients (PD, n=15). Metrics have also shown a good sensitivity to change, enabling to detect changes in PD medication states. Conclusion: IMUs offer a complementary solution for mobility assessment in clinical biomechanics. However, the full potential of this technology will only be reached when IMUs will be integrated and validated within a clinical tool.
|
Page generated in 0.0645 seconds