• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An evaluation of inertial motion capture technology for use in the analysis and optimization of road cycling kinematics

Cockcroft, Stephen John 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: Optical motion capture (Mocap) systems measure 3D human kinematics accurately and at high sample rates. One of the limitations of these systems is that they can only be used indoors. However, advances in inertial sensing have led to the development of inertial Mocap technology (IMCT). IMCT measures kinematics using inertial measurement units (IMUs) attached to a subject's body without the need for external sensors. It is thus completely portable which opens up new horizons for clinical Mocap. This study evaluates the use of IMCT for improving road cycling kinematics. Ten male sub-elite cyclists were recorded with an IMCT system for one minute while cycling at 2, 3.5 and 5.5 W.kg-1 on a stretch of road and on a stationary trainer. A benchmark test was also done where cycling kinematics was measured simultaneously with the IMCT and a gold-standard Vicon optical system. The first goal was to assess the feasibility of conducting field measurements of cycling kinematics. Magnetic analysis results showed that the IMUs near the pedals and handlebars experienced significant magnetic interference (up to 50% deviation in intensity) from ferrous materials in the road bicycles, causing significant errors in kinematic measurement. Therefore, it was found that the IMCT cannot measure accurate full-body kinematics with the subject on a road bicycle. However, the results of the benchmark test with the Vicon showed that the IMCT can still measure accurate hip (root mean square error (RMSE) < 1°), knee (RMSE < 3.5°) and ankle (RMSE < 3°) flexion using its Kinematic Coupling algorithm. The second goal was to determine whether there is a significant difference between road cycling kinematics captured on the road and in a laboratory. The outdoor flexion results were significantly different to the indoor results, especially for minimum flexion (P < 0.05 for all joints). Changes in rider kinematics between high and low power were also found to have significantly more variability on the road (R2 = 0.36, 0.61, 0.08) than on the trainer (R2 = 0.93, 0.89, 0.56) for the hip, knee and ankle joints respectively. These results bring into question the ecological validity of laboratory cycling. Lastly, applications of IMCT for optimizing cycling performance were to be identified. Several aspects of kinematic analysis and performance optimization using the IMCT were evaluated. It was determined that IMCT is most suited for use as a dynamic bicycle fitting tool for analysis of biomechanical efficiency, bilateral asymmetry and prevention of overuse injuries. Recommendations for future work include the elimination of the magnetic interference and integration of the IMCT data with kinetic measurements to develop an outdoor dynamic fitting protocol. / AFRIKAANSE OPSOMMING: Optiese bewegingswaarnemingstelsels (BWS) meet drie-dimensionele menslike kinematika met hoë akkuraatheid en teen hoë monstertempo's. Een van die nadele van BWS is dat hulle slegs binnenshuis gebruik kan word. Onlangse ontwikkelings in sensor tegnologie het egter gelei na die beskikbaarheid van traagheids-BWS-tegnologie (TBT). TBT gebruik traagheidsmetingseenhede (TMEs) wat aan 'n persoon se liggaam aangeheg kan word om die kinematika te verkry sonder enige eksterne sensore. TBT is dus volkome draagbaar, wat nuwe geleenthede skep vir kliniese bewingsanalises. Hierdie projek evalueer die gebruik van TBT vir die verbetering van fietsry kinematika. Tien kompeterende fietsryers (manlik) was getoets met 'n TBT terwyl hulle teen 2, 3.5 and 5.5 W.kg-1 gery het op 'n pad, en op 'n stilstaande oefenfietsraam. 'n Maatstaftoets was ook uitgevoer waar fietsry-kinematika gelyktydig met die TBT en die Vicon optiese BWS opgeneem was. Die eerste doel van die navorsing was om die moontlikheid te ondersoek of fietsryer kinematika op die pad gemeet kan word. Die resultate toon dat die ferro-magnetiese materiale wat in meeste padfietse voorkom, 'n beduidende magnetiese steuring (tot 50% afwyking in intensiteit) op die TMEs naby die pedale en handvatsels veroorsaak, wat lei tot aansienlike foute in die kinematiese metings. Gevolglik was dit gevind dat die TBT nie volle-liggaam kinematika op 'n fiets kan meet nie. Nogtans, het die resultate van die Vicon maatstaftoets bewys dat die TBT nog steeds akkurate heup (wortel van die gemiddelde kwadraad fout (WGKF) < 1°), knie (WGKF < 4°) en enkel (WGKF < 3°) fleksie kan meet met die “Kinematiese Koppeling” algoritme. Die tweede doel was om te bepaal of daar 'n beduidende verskil tussen die laboratorium en pad fietsry-kinematika is. Die buitelug fleksie data het beduidend verskil van die binnenshuise resultate, veral vir minimum fleksie (P < 0.05 vir alle gewrigte). Veranderinge in fietsryer kinematika tussen hoë en lae krag het ook beduidend meer variasie op die pad (R2 = 0.36, 0.61, 0.08) as op die oefenfietsraam (R2 = 0.93, 0.89, 0.56) vir die heup, knie en enkel gewrigte, onderskeidelik, gehad. Hierdie resultate bevraagteken die ekologiese geldigheid van kinematiese toetse op fietsryers in 'n laboratorium. 'n Laaste doel was om die toepassings van TBT vir die optimering van fietsry kinematika te ondersoek. 'n Verskeidenheid aspekte van die analise en verbetering van fietsry kinematika met die TBT word bespreek. Die gevolgtrekking is dat TBT geskik is vir gebruik as 'n dinamiese instrument vir die analise van biomeganiese doetreffendheid, bilaterale asimmetrie en die voorkoming van beserings. Aanbevelings vir toekomstige werk, sluit in die uitskakeling van die magnetiese inmenging, asook die integrasie van die TBT data met kinetiese metings.

Page generated in 0.099 seconds