• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Indoor 3D Scene Understanding Using Depth Sensors

Lahoud, Jean 09 1900 (has links)
One of the main goals in computer vision is to achieve a human-like understanding of images. Nevertheless, image understanding has been mainly studied in the 2D image frame, so more information is needed to relate them to the 3D world. With the emergence of 3D sensors (e.g. the Microsoft Kinect), which provide depth along with color information, the task of propagating 2D knowledge into 3D becomes more attainable and enables interaction between a machine (e.g. robot) and its environment. This dissertation focuses on three aspects of indoor 3D scene understanding: (1) 2D-driven 3D object detection for single frame scenes with inherent 2D information, (2) 3D object instance segmentation for 3D reconstructed scenes, and (3) using room and floor orientation for automatic labeling of indoor scenes that could be used for self-supervised object segmentation. These methods allow capturing of physical extents of 3D objects, such as their sizes and actual locations within a scene.
2

Point clouds in the application of Bin Picking

Anand, Abhijeet January 2023 (has links)
Automatic bin picking is a well-known problem in industrial automation and computer vision, where a robot picks an object from a bin and places it somewhere else. There is continuous ongoing research for many years to improve the contemporary solution. With camera technology advancing rapidly and available fast computation resources, solving this problem with deep learning has become a current interest for several researchers. This thesis intends to leverage the current state-of-the-art deep learning based methods of 3D instance segmentation and point cloud registration and combine them to improve the bin picking solution by improving the performance and make them robust. The problem of bin picking becomes complex when the bin contains identical objects with heavy occlusion. To solve this problem, a 3D instance segmentation is performed with Fast Point Cloud Clustering (FPCC) method to detect and locate the objects in the bin. Further, an extraction strategy is proposed to choose one predicted instance at a time. Inthe next step, a point cloud registration technique is implemented based on PointNetLK method to estimate the pose of the selected object from the bin. The above implementation is trained, tested, and evaluated on synthetically generated datasets. The synthetic dataset also contains several noisy point clouds to imitate a real situation. The real data captured at the company ’SICK IVP’ is also tested with the implemented model. It is observed that the 3D instance segmentation can detect and locate the objects available in the bin. In a noisy environment, the performance degrades as the noise level increase. However, the decrease in the performance is found to be not so significant. Point cloud registration is observed to register best with the full point cloud of the object, when compared to point cloud with missing points.

Page generated in 0.1349 seconds