• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Linear Sum Assignment Algorithms for Distributed Multi-robot Systems

Liu, Lantao 02 October 2013 (has links)
Multi-robot task assignment (allocation) involves assigning robots to tasks in order to optimize the entire team’s performances. Until now, one of the most useful non-domain-specific ways to coordinate multi-robot systems is through task allocation mechanisms. This dissertation addresses the classic task assignment problems in which robots and tasks are eventually matched by forming a one-to-one mapping, and their overall performances (e.g., cost, utility, and risk) can be linearly summed. At a high level, this research emphasizes two facets of the multi-robot task assignment, including (1) novel extensions from classic assignment algorithms, and (2) completely newly designed task allocation methods with impressive new features. For the former, we first propose a strongly polynomial assignment sensitivity analysis algorithm as well as a means to measure the assignment uncertainties; after that we propose a novel method to address problems of multi-robot routing and formation morphing, the trajectories of which are obtained from projections of augmenting paths that reside in a new three-dimensional interpretation of embedded matching graphs. For the latter, we present two optimal assignment algorithms that are distributable and suitable for multi-robot task allocation problems: the first one is an anytime assignment algorithm that produces non-decreasing assignment solutions along a series of task-swapping operations, each of which updates the assignment configurations and thus can be interrupted at any moment; the second one is a new market-based algorithm with a novel pricing policy: in contrast to the buyers’ “selfish” bidding behaviors in conventional auction/market-based approaches, we employ a virtual merchant to strategically escalate market prices in order to reach a state of equilibrium that satisfies both the merchant and buyers. Both of these newly developed assignment algorithms have a strongly polynomial running time close to the benchmark algorithms but can be easily decentralized in terms of computation and communication.

Page generated in 0.0791 seconds